当前位置:首页 > 通信技术 > 通信技术
[导读] 分组传送网目前还没有一个标准的定义。从广义的角度讲,只要是基于分组交换技术,并能够满足传送网对于运行维护管理(OAM)、保护和网管等方面的要求,就可以称为PTN。具体的分组交换技术可以是多协议标记交换(MPLS)、

 分组传送网目前还没有一个标准的定义。从广义的角度讲,只要是基于分组交换技术,并能够满足传送网对于运行维护管理(OAM)、保护和网管等方面的要求,就可以称为PTN。具体的分组交换技术可以是多协议标记交换(MPLS)、传送多协议标记交换(T-MPLS/MPLS-TP)、以太网、运营商骨干桥接-流量工程(PBB-TE)、弹性分组环(RPR)等。前两年通信业界一般理解的PTN技术主要包括T-MPLS和PBB-TE。近期由于支持PBB-TE的厂商和运营商越来越少,中国已经基本上将PTN和T-MPLS/MPLS-TP划上了等号。本文中提到的PTN均指基于T- MPLS/MPLS-TP的PTN设备。

从T-MPLS到MPLS-TP,国际电信联盟电信标准部门(ITU-T)和因特网工程任务组(IETF)经过了多年的竞争和协商达成了共识,体现了传送领域和数据领域之间从竞争到融合的发展历程。可以说MPLS-TP是传送领域和数据领域的利益竞争和平衡协调的产物。目前,IETF已获得了 MPLS-TP标准开发的主导权,ITU-T SG15在MPLS-TP标准中的开发话语权已逐渐被IETF剥夺,转为以企业和个人专家方式参与[1-6]。

本文将对PTN/MPLS-TP技术和标准发展过程中的几个关键问题进行探讨,内容包括端到端的服务质量(QoS)实现机制、网络分层结构、三层(L3)功能的引入和数据平面环回功能等,并基于PTN网络建设维护和开展业务的需求提出了个人观点。

1 PTN网络中的QoS技术

QoS是指网络通信过程中,允许用户业务在丢包率、延迟、抖动和带宽等方面获得可预期的服务水平。 PTN设备的QoS功能包括流分类、标记、速率限制、带宽保证、流量整形、调度策略等。PTN网络中业务的QoS主要由基于MPLS的流量工程(TE)和区分服务(DiffServ)两种机制来实现,目标是实现面向业务的端到端的QoS保障能力[7-11]。

1.1流量工程

IETF对MPLS-TP的定义要求必须支持流量工程(TE)且TE可以实现对网络资源的可控性。 TE的目标是有效而可靠地运行网络,同时优化网络资源的使用。约束路由(CBR)则是TE中最重要的组成部分。IP/MPLS网络中的流量工程一般是通过 MPLS的TE扩展即多协议标记交换-流量工程(MPLS-TE)来实现的。

TE在PTN网络中的作用主要体现在2个方面:

(1)业务路由可控——进入PTN的业务通过伪线(PW)封装后再复用到标记交换路径(LSP)。LSP的建立可以通过网管或控制平面实现,两种建立方式的LSP路由都是可控的。

(2)业务带宽可控——目前PTN承载的业务主要包括E1仿真和以太网业务。E1仿真业务的带宽一般是固定可控的,并且要求高优先级,不允许丢包,时延低。以太网业务可以分为2大类:恒定速率业务和可变速率业务。恒定速率业务的要求和可控性与E1仿真业务基本相同。可变速率业务则是通过承诺速率 (CIR)和额外速率(EIR)来实现对业务带宽的控制,即运营商只对用户保障小于等于CIR的带宽,在网络拥塞时可以对EIR部分的流量进行丢弃处理,从而实现网络带宽资源的可控性。

具体来说,运营商通过配置PW(即业务)和LSP的CIR,并满足连接允许控制的条件:一条LSP中的所有PW的CIR之和必须小于等于该 LSP的CIR,一条链路中的所有LSP的CIR之和必须小于等于该链路的CIR,运营商就可以在网络正常运行的情况下,满足所有业务的CIR带宽需求。由于存在可变速率业务的突发业务(即EIR部分),因此即使使用了TE,网络中仍然可能会发生拥塞,此时如何保障所有业务都能得到其CIR带宽就需要使用区分服务。

1.2 区分服务

区分服务起源于集成服务(IntServ)。区分服务的目的是在因特网上为流量提供有区别的业务级别。与集成服务相比,区分服务定义的是一个相对简单而粒度粗一些的控制系统。另外,区分服务针对的是流聚合后的每一类QoS控制,而不是像集成服务那样针对每个流。因此,区分服务具有可扩展性,能够在大型网络上提供QoS服务。

区分服务在其域的边缘对进入的IP流进行分类,并为每一类型指定一个类型标志区分服务代码点(DSCP)。域内的核心路由器查看DSCP值,并根据每一类的特定逐跳行为(PHB)调度包的转发。IETF目前定义了两种PHB:加速转发(EF)和保证转发(AF)。

(1)加速转发

EF PHB的流量不受其他PHB流量的影响,确保包以最快速率得到转发。与传统的租用线类似,EF PHB能够提供低丢包率、低延迟、低抖动和有保证的带宽服务。使用EF的业务带宽参数只有CIR,EIR总等于0,超过CIR的流量将被丢弃。EF可用于 E1仿真业务或恒定速率的以太网业务。EF必须遵循RFC3246的规定。

(2)保证转发

AF为数据包提供4个级别的转发特征,每个级别有3种丢弃优先级。PTN设备通过配置各级别的转发资源(如缓冲区和带宽)和丢弃优先级来决定业务的级别。当业务不发生拥塞时,AF的各级别业务性能值相同;当业务发生拥塞时,所有AF级别的业务都会发生丢包,丢包的多少和业务级别相关。AF必须遵循RFC2597的规定。

1.3 MPLS支持的区分服务

由于PTN是基于MPLS-TP实现的,因此PTN设备中的区分服务需要采用RFC3270定义的基于MPLS的区分服务机制来实现。

IP包经过MPLS封装后,核心路由器将看不到DSCP。为此,IETF提出了一种MPLS支持区分服务的方法。MPLS支持的区分服务能够把区分服务的多个行为集合(BA)映射到MPLS的一条LSP上,根据BA的PHB来转发LSP上的流量。LSP与BA的映射有两种方式:实验推断的 LSP(E-LSP)和标记编码推断的LSP(L-LSP)。

(1)E-LSP

E-LSP用MPLS标签的实验(EXP)字段把多个BA指派到一条LSP上,使用MPLS标签的EXP字段表示一个包的PHB。最多可以把8个BA映射到EXP字段中,即一条E-LSP最多可以支持8个业务等级。

(2)L-LSP

L-LSP把一条LSP指派给一个BA,并采用EXP表示包丢弃优先级。一条L-LSP只能支持一个业务等级。由于MPLS网络设备会在每一跳中都交换标签值,而管理标签与PHB的映射比较困难。E-LSP要比L-LSP更容易控制,因为E-LSP事先就可以确定整个网络中每个包的EXP字段和PHB之间的映射关系。目前PTN设备采用的主要是E-LSP。

1.4 PTN端到端QoS的实现

通过上述流量工程和MPLS支持区分服务的机制,就可以实现PTN所倡导的面向业务的端到端的 QoS保障能力。首先通过MPLS流量工程实现对业务路由和带宽的控制,以避免负载不均衡出现的拥塞问题;其次,当突发业务或网络保护引起网络拥塞时再通过MPLS支持的区分服务机制实现对业务承诺带宽(CIR)的保障。

对于E-LSP,表1给出了一种业务等级的分类方法示例。其中的峰值速率(PIR),等于CIR加EIR。在这种实现方法中数据帧的PW和LSP的EXP值相同。

对于E1仿真业务和恒定速率的以太网业务(如语音和视频),均采用EF PHB,并设置CIR等于PIR。对于突发型业务(如虚拟专用网和以太网专线)采用AF PHB。为了保障突发业务的CIR带宽,需要在网络入口依据带宽参数对业务流进行计量、整形和标记,并应支持RFC2698定义的双速率三色标记法。同时基于映射关系设置数据帧的EXP值,以便LSP经过的后续节点根据该值选择合适的PHB。

对于普通数据业务,设置CIR等于0,并设置最高速率PIR,采用缺省的转发行为(DF)。

当网络中发生拥塞时,对于采用EF PHB和AF PHB的流量部分的业务带宽将始终得到保障。对于普通数据业务可以首先进行丢弃,或是与AF PHB的流量部分进行加权处理,以便即使在拥塞时普通数据业务也能得到一定的带宽。

2 PTN网络分层结构

IETF RFC5654将MPLS-TP分为传送业务层、传送通道层和段层。其中传送业务层可以是PW或业务LSP,类似于同步数字体系(SDH)网络中的VC- 12。PW用于提供时分复用(TDM)、以太网和异步传输模式(ATM)等仿真业务;业务LSP用于提供IP和MPLS等网络层业务。传送通道层是指 LSP层,类似于SDH网络中的VC-4。段层用于在两个相邻MPLS-TP节点之间汇聚传送业务层或传送通道层的信息。段层可以是采用MPLS-TP技术实现,也可以采用其他技术来实现,如采用同步数字体系/以太网/光传送网(SDH/ETH/OTN)。PTN通过采用多层网络的架构,可以实现与同步数字体系/光传送网类似的可扩展性。

除了MPLS-TP关注的3层网络之外,PTN设备还需要支持业务层和段层技术的相关功能。如以太网业务层的OAM(属于IEEE802.1ag和Y.1731)、以太网链路层OAM(属于IEEE 802.3ah)、SDH业务和链路的开销处理和保护功能等。

目前的PTN设备是通过PW支持各种仿真业务,还不支持通过业务LSP支持IP/MPLS业务。对于IP/MPLS业务,采用以太网PW仿真实现,优点是业务的透明性好,缺点是传送效率较低(需要传送以太网帧头),对于较短的数据包尤其明显。如果采用TDM PW仿真实现,将对网络性能提出较高要求,并可能增加设备的成本。如果采用业务LSP实现,则可以避免上述问题,但是业务透明性较差,可能需要处理部分 L3协议。具体方式的选择需要综合考虑业务的透明性、传送效率和成本等因素。

目前的PTN设备只支持单段伪线(SS-PW),即PW和LSP的源宿点重合。SS-PW无法实现多个LSP所承载的PW的汇聚,从而对PTN 设备的LSP容量提出了很高的要求。另外只能采用端到端的LSP保护,无法应对多点故障。而通过引入多段伪线(MS-PW),则可以克服SS-PW存在的上述问题,提高PTN网络的可扩展性。IETF已经将MS-PW列为MPLS-TP的可选项。

3 PTN对L3功能和业务的支持

目前的PTN主要定位于提供二层(L2)的业务,包括E1/ATM仿真业务、E-Line/E- LAN/E-Tree以太网业务等。PTN的主要应用场景是移动网络的回传,包括目前的3G网络,以及未来的长期演进(LTE)。PTN可以很好地满足现有3G网络回传的承载需求,但是否能够满足LTE的需求人们还心存疑虑。

由于LTE阶段出现了基站之间的互联需求(X2接口),以及基站到服务网关(SGW)的多归属需求,因此与3G对承载网的需求将有所不同。针对上述需求,目前有两种主要的解决方案。一种是建议采用端到端的路由器组网方案;一种是采用L3+L2的组网方案,即核心层采用L3技术组网,接入汇聚层采用L2技术组网。由于端到端的路由器方案在网络扩展性、可管理性和可控性方面存在问题,因此L3+L2的组网方案得到更多的认可和支持。该方案中的核心层可以采用路由器组网,也可以通过在PTN中引入L3功能来实现。下面主要对后一种方式进行讨论。

L3功能主要包括IP路由和转发功能,以及L3 MPLS VPN和L3组播功能。由于IP流量和组播存在流量带宽和路由的不确定性,因此很难提供严格的QoS保障能力。如果在PTN中引入这两种业务,为了避免对原有L2业务的影响,只能将这两种业务设置为最低等级的业务。而L3 MPLS虚拟专用网(VPN)由于是基于MPLS实现,因此可以采用前面提到的基于MPLS的流量工程和区分服务机制来保障业务的服务质量。同时还可以在 MPLS VPN中支持L3组播,同样可以保证服务质量。

综上所述,对于需要提供有质量保证的L3业务,建议在PTN中以L3 MPLS VPN的方式提供。而对服务质量没有要求的L3业务,可以直接采用IP路由和转发功能来实现。

4 数据平面环回功能

现有的PTN设备只支持OAM的环回功能(LB)。通过OAM LB可以验证源、宿维护端点间的双向连通性,以检测节点间及节点内部故障,但是并不能对故障进行准确的定位。如图1所示,如果PE2-PE3之间的链路发生故障,通过OAM LB并不能确定是PE3出现故障还是PE2-PE3之间的链路发生故障。而如果支持类似SDH设备的数据平面环回,即业务环回,则可以通过对不同的点进行环回,实现对故障的准确定位。

与SDH类似,目前提出的PTN的数据平面环回包括远端环回(入口环回)、近端环回(出口环回)和光纤环回(客户环回)3种方式。除了进行故障定位,光纤环回还可以进行单端业务性能测试,如双向时延、丢包率和吞吐量测试,以方便进行现网测试。

由于分组传送网已经支持OAM的远端和近端环回,可以实现与数据平面的远端和近端环回类似的功能。因此本文认为应首先实现光纤环回功能,以便能够实现准确的故障定位和单端测试。是否需要支持数据平面的远端和近端环回功能还需要进一步研究。目前IETF和ITU-T正在对数据平面环回功能的标准化进行讨论。

5 结束语

PTN是运营商从现有2G移动回传的多业务传送节点(MSTP)网络演进的最佳方案,定位于满足 3G移动回传、企事业专线/专网等高品质业务需求。2008—2009年,中国三大运营商纷纷针对PTN承载3G移动回传进行了全面的实验室测试和现网试点应用,大力推进了设备商PTN产品成熟和商用化进展。中国移动已于2009年10—12月开始大规模集采基于MPLS-TP的PTN设备,标志着PTN 进入产业化的关键期。2010年,MPLS-TP的国际标准化进展问题是业内最关心的热点问题,并且MPLS-TP的国际标准何时稳定将直接影响PTN何时能从新技术引入发展到大规模应用阶段。本文对PTN技术发展中几个问题进行了探讨,希望可以对PTN技术的发展和完善有所贡献。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

这些年,NVIDIA利用其加速计算卡、CUDA生态,在高性能计算领域混得风生水起,但因为美国制裁,A100、H100这样先进产品,已经无法卖给中国客户,比如之前的华为,比如新近被美国加入“实体清单”的浪潮。

关键字: NVIDIA NVLink-C2C 带宽

西班牙巴塞罗那2023年3月1日 /美通社/ -- 2023年世界移动大会(MWC2023)期间,华为发布了基于F5G(第五代固定网络)的业界首个端到端OSU(Optical Service Unit, 光业务单元)产品...

关键字: 光通信 华为 OS 带宽

近日,在2022全球移动宽带论坛“5.5g与2030智能世界”媒体圆桌上,gsma首席技术官alex sinclair表示,根据3gpp标准节奏,预计5.5g将于2024年进入商用阶段。

关键字: 华为 5G 带宽

北京2022年12月20日 /美通社/ -- 伴随牛顿力学体系的建立而诞生的近代科学,开辟了一个全新的时代改变了人类的生产生活和思维方式,对人类社会的发展进程产生了深远的、革命性的影响。时至今日,科技创新也依然是影响和改...

关键字: 分布式 节点 带宽 GB

(全球TMT2022年11月1日讯)华为数据通信产品线总裁胡克文在UBBF 2022期间发表了题为“迈向Net5.5G,激发新增长”的主题演讲,揭示了运营商B2B业务实现新增长的重大商机与关键举措,描绘了5.5G时代基...

关键字: NET 华为 MPLS 5G

(全球TMT2022年10月31日讯)在第八届全球超宽带高峰论坛(UBBF 2022)期间,华为光产品线总裁靳玉志发表了题为"释放光纤潜能,迈向F5.5G"的主题演讲,深刻阐述了光纤通信技术在社会发展中发挥的关键作用,...

关键字: 华为 5G 带宽 端口

(全球TMT2022年10月31日讯)在UBBF 2022期间,华为公司高级副总裁、亚太地区部总裁林柏枫发表了《联接新升级,激发新增长》的主题演讲。他阐述了运营商如何在家庭和企业两个场景中释放联接的全部价值,及如何通过...

关键字: 华为 家庭网络 光纤 带宽

曼谷2022年10月28日 /美通社/ -- 在第八届全球超宽带高峰论坛(UBBF 2022)期间,华为光产品线总裁靳玉志发表了题为"释放光纤潜能,迈向F5.5G"的主题演讲,深刻阐述了光纤...

关键字: 光纤 华为 5G 带宽

在下述的内容中,小编将会对频谱分析仪的相关消息予以报道,如果频谱分析仪是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 频谱分析仪 分析仪 带宽

亚盛医药宣布,公司将在第73届美国肝病研究学会年会上以口头报告形式公布其在研凋亡蛋白抑制因子(IAP)拮抗剂APG-1387治疗慢性乙型肝炎(CHB)的首次人体I期试验的研究成果。(医药健闻)...

关键字: IAP HB
关闭
关闭