当前位置:首页 > 嵌入式 > 嵌入式硬件

摘要:介绍一种高速高质量的嵌入式摄像头传输技术——QuickCapture技术;详细叙述其设计思想和工作流程,并用可编程逻辑器件Bulverde板卡予以实现。

关键词:嵌入式系统驱动程序快速捕捉摄像头

随着嵌入式处理器的普及和硬件成本的不断降低,具有拍照和摄像功能的手机逐步走进了人们的生活。但由于嵌入式处理器的速度有限,在处理图形和多媒体数据方面显得力不从心,导致嵌入式系统的摄像头分辨率低、色深低、数据传送速度慢,无法满足人们即时捕捉高质量图片和视频的需求。QuickCapture技术是一种专为手持设备设计,用来改进图像质量和传输速度的技术。本文基于QuickCapture技术,就摄像头驱动程序和图片信息传输问题,提供一种解决方案。

1硬件介绍

本人选择的嵌入式微处理器是2003年底Intel公司刚刚推出的一款专门面向移动电话和掌上电脑的专用处理器,PXA27x系列,代号为Bulverde。该处理器采用了QuickCapture技术。QuickCapture为成像设备与无线设备提供接口,有助于改进图像质量以及降低产品整体成本。该项技术包括快速浏览、快速拍照和快速视频拍摄三种操作模式。该技术使得Bulverde可以支持400万像素数码镜头,并能提供最大416Mbps的数据传输速率。


集成在该开发板上的是Agilent公司的型号为ADCM-2650-0001的摄像头感应器。在VGA(480×640)分辨率下,每秒传输的图片能达到15帧,具备自动曝光和白平衡功能,并且针对嵌入式应用做了很多优化处理,所以非常适合嵌入式领域的应用。ADCM-2650-0001内含3个独立的FIFO条目,存储从感应器捕捉到的视频或者图片数据信息。连接处理器和摄像头感应器的是QuickCaptureInterface(快速捕捉接口),它提供了以下几种类型的寄存器:

①QCI(QuickCaptureInterface)控制寄存器0~4;

②QCI时间间隔寄存器;

③QCI状态寄存器;

④QCIFIFO控制寄存器;

⑤QCI接收缓冲区寄存器。

通过这些寄存器,可以控制整个处理器与感应器之间的工作流程。

摄像头感应器与IntelXScale处理器之间的连接,如图1所示。

2接口的实现

本人采用的是ElaME1.0(“和欣”手机操作系统)作为嵌入式操作系统。这是一款由我国自主开发的智能手机操作系统,基于微内核,具有多进程、多线程、抢占式、基于线程的多优先级任务调度等特性。和欣操作系统体积小,速度快,适合网络时代的绝大部分嵌入式信息设备;除了支持摄像头感应器外,还支持彩色LCD、触摸屏、USB等多种嵌入式设备。


2.1ElaME下的摄像头驱动模型

ElaME的驱动模块如图2所示。

ElaME的驱动模型与Unix、Windows操作系统的不一样。它把驱动程序构件化了,使得驱动程序具备了构件的灵活等多种特性。例如:当操作系统启动时并不用加载所有的驱动程序,而是当用户需要用到该设备时才加载。这样的设计使得在手机硬件资源比较紧张的环境中比传统的嵌入式操作性系统具有更强的竞争力。设备管理器(devicemanager)是一个内核对象,管理系统中所有的设备与驱动对象,负责设备信息的搜集、驱动构件对象的创建和删除、设备硬件资源的冲突检测等。

摄像头感应器驱动就是一个构件对象,它的主要工作有以下几点:

①负责通过I2C总线查询摄像头感应器信息,调节摄像头感应器的设置;

②建立和控制DMA传输通道,通过DMA方式将3个FIFO里的数据信息传送到的内存中;

③提供可以给用户态程序使用的接口。

2.2摄像头感应器驱动的关键技术实现

下面从驱动设计上,具体说明如何基于QuickCapture技术,通过DMA方式在感应器的FIFO与内存之间建立最快速最高质量的数据传送。

在PXA27x型号的处理器中,有两种内部外围器件:外部总线的外围器件(PBP)和内部总线的外围器件(IBP)。快速捕捉接口(QuickCaptureInterface)属于IBP。内部总线的外围器件通过外围总线连接至DMAC,使用流数据传送。DMAC有两种工作方式:描述器取入方式和非描述器取入方式。因为当前手机上捕捉到的图片大小分别是从QQVGA(160×120)、QCIF(176×144)、QVGA(320×240)、VGA(480×640)不等,最小QQVGA的每张图片大小也有37.5KB,而每个描述器一次最大能传送(8K-1)B,所以选择多描述器链的方式。描述器链就是将该描述器的特定寄存器内存放的是下一个描述器的地址,当该描述器传送完自身的数据后,能获得下一描述器的地址,读取描述器内的信息,然后继续下一轮的数据传送。每个FIFO都有自己的一串描述器链。如果是捕捉图片,采用一个FIFO即可,如果捕捉视频,要用到三个FIFO。

以下是建立多描述器链的步骤。

①根据图片的格式来确定每帧的大小,如为RGB565格式。

frame_size=camera_info>capture_width*

camera_context->capture_height*2;

camera_info->fifo0_transfer_size=frame_size;

//以下为捕捉视频

//camera_info->fifo1_transfer_size=0;

//camera_info->fifo2_transfer_size=0;

②根据每帧的大小和描述器一次能传送的大小确定描述器的个数。

camera_info->fifo0_num_descriptors=

(camera_info->fifo0_transfer_size+SINGLE_DESCRIPTOR_TRANSFER_MAX-1)

/SINGLE_DESCRIPTOR_TRANSFER_MAX;

camera_info->fifo1_num_descriptors=…;

camera_info->fifo1_num_descriptors=…;

③判断是否超过DMA规定的描述器的大小限制。

④分配DMA描述器的地址,并赋给FIFO0。

camera_context->fifo0_descriptors_physical=

(unsigned)camera_context->dma_descriptors_physical;

cur_des_physical=(DMAC_DESCRIPTOR_T*)

camera_context->fifo0_descriptors_physical

⑤将每个描述器与1帧图片的每个数据块建立一一对应的关系。

for(j=0;j<camera_context->fifo0_num_descriptors;j++){

//建立描述符

cur_des_virtual->DDADR=

(unsigned)cur_des_physical+sizeof(DMAC_DESCRIPTOR_T);

//FIFO0物理地址z

cur_des_virtual->DSADR=CI_REGBASE_PHY+CIBR0;

cur_des_virtual->DTADR=darget_physical;
cur_des_virtual->DCMD=des_rtansfer_size

|DMAC_DCMD_FLOW_SRC

|DMAC_DCMD_INC_TRG_ADDR

|(DMAC_BURSTSIZE_16<<16);

//向前移动指针

remain_size-=des_transfer_size;

cur_des_virtual++;

cur_des_physical++;

target_physical+=des_transfer_size;

//停止DMA传送捕捉的帧

last_des_virtual=cur_des_virtual-1;

last_des_virtual->DDADR=(unsigned)camera_context->fifo0_descriptors_physical;

将每个描述器的DDADR(DMA描述器地址寄存器)指向下一个描述器的地址,将最后一个DDADR指向第一个描述器的地址,这样形成一个环路的描述器链。另外,还要设置DSADR(DMA源地址寄存器)。由于是从摄像头感应器到内存,所以FIFO的地址是源地址,DTADR(DMA目标地址寄存器)为内存,DCMD(DMA命令寄存器)设置传输大小和源流控制。


以上都建立好以后,DMA就可以传送数据了。传送数据的流程如图3所示。

3结语

目前的嵌入式开发板对于摄像头感应器的数据传送方式各不相同。如NeoMagic公司开发的Mimagic5传送图片采用的是独立的DMA功能,而传送视频采用的是特定的内存访问通道,VideoCaptureInterface不通过DMA方式;而Intel公司的PXA27x采用QuickCaptre技术,从官方发布数据表明,明显地提高了视频信息的传送速度。

随着嵌入式设备不断的发展更新,将会有更多、更先进、更高速的数据传输技术被应用到嵌入式开发的各个领域。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭