当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]与晶圆表面地缺陷密度对应,芯片地尺寸也对晶圆电测良品率有一定的影响。

芯片面积和缺陷密度

与晶圆表面地缺陷密度对应,芯片地尺寸也对晶圆电测良品率有一定的影响。

电路密度和缺陷密度

晶圆表面的缺陷通过使部分芯片发生故障从而导致整个芯片失效。有些缺陷位于芯片不敏感区,并不会导致芯片失效。

然而,由于日减小的特征工艺尺寸和增加的元器件密度,电路集成度有逐渐升高的趋势。这种趋势使得任何给定缺陷落在电路有源区域的可能性增加了。

工艺制程步骤的数量

工艺制程步骤的数量被认为是晶圆厂CUM良品率的一个限制因素。步骤越多,打碎晶圆或对晶圆误操作的可能性就越大。这个结论同样适用于晶圆电测良品率。随着工艺制程步骤数的增加,除非采取相应措施来降低由此带来的影响,晶圆背景缺陷密度将增加。增加的背景缺陷密度会影响更多的芯片,使晶圆电测良品率变低。

特征图形尺寸和缺陷尺寸

更小的特征工艺尺寸从两个主要方面使维持一个可以接受的晶圆电测良品率使得更困难。第一,较小图像的光刻比较困难。第二,更小的图像对更小的缺陷承受力很差,对整体的缺陷密度的承受力也变得更差。最小特征工艺尺寸对允许缺陷尺寸的10:1定律已经被讨论过了。一项评估指出,如果缺陷密度为每平方厘米1个缺陷,特征工艺尺寸为0.35um的电路的晶圆电测良品率会比相同条件下的0.5um电路低10%。

工艺制程周期

晶圆在生产中实际处理的时间可以用天来计算。但是由于在各工艺制程站的排队等候和工艺问题引起的临时性减慢,晶圆通常会在生产区域停留几个星期。

晶圆等待时间越长,受到污染而导致电测良品率降低的可能性就越大。向即时生产方式的转变是一种提高良品率及降低由生产线存量增加带来的相关成本的尝试。

封装和最终测试良品率

完成晶圆电测后,晶圆进入封装工艺,又称为封装与测试在那里它们被切割成单个芯片并被封装进保护性外壳中。在一系列步骤中也包含多次目检和封装工艺制程的质量检查。

在封装工艺完成后,封装好的芯片会经过一系列的物理、环境和电性测试,总称为最终测试。最终测试后,第三个主要良品率被计算出来,即最终测试的合格芯片数与晶圆电测合格芯片数的比值。

整体工艺良品率

整体工艺良品率是3个主要的乘积。这个数字以百分数表示,给出了出货芯片数相对最初投入晶圆上完整芯片数的百分比。它是对整个工艺流程成功率的综合评测。

整体良品率随几个主要的因素变化。上图列出了典型的工艺良品率和由此计算出的整体良品率。前两列是影响单一工艺及整体良品率的主要工艺制程因素。

第一列是特定电路的集成度。电路集成度越高,各种良品率的预期值就越低。更高的集成度意味着特征图形尺寸的相应减小。第二列给出了生产工艺的成熟程度。在产品生产的整个生命周期内,工艺良品率的走势几乎都呈现S弯曲的特性。开始阶段,许多初始阶段的问题逐渐被解决,良品率上升较缓慢。

接下来是一个良品率迅速上升的阶段,最终良品率会稳定在一定的水平上,它取决于工艺成熟程度、芯片尺寸、电路集成度、电路密度和缺陷密度共同作用。下图数据显示,对于简单成熟的产品,整体良品率可能在很低的良品率到90%的范围内变化。半导体制造商把它们的良品率水平视为机密信息,因为从工艺良品率直接就可以得出相应的利润和生产管理水平。

从上表的数据可以看出晶圆电测良品率是3个良品率点中最低的,这就是为什么会有许多致力于提高晶圆电测良品率的计划。有一段时间晶圆电测良品率的提升对生产率的提高产生最大的影响。更大和更复杂的芯片的出现使得如设备持有成本等其他因素被加入到提高生产率的范畴。百万级芯片时代要求的成功是晶圆电测良品率需要在90%的范围。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭