当前位置:首页 > 嵌入式 > 嵌入式软件
[导读] 本文设计了实时系统加速RTA(Real-Time Acceleration)模块,对任务调度和系统时间管理进行硬件化,降低了任务中断时间,并对最终的测量数据进行对比,得出结论。

随着科技的进步,嵌入式系统的功能逐渐由简单向复杂发展,开发难度也随之提高。嵌入式操作系统的使用,屏蔽了部分硬件信息,提供给开发者统一的平台,降低了开发难度,提高了代码的重复利用率。在一些特殊的领域(医疗、汽车、航空航天),对嵌入式系统的实时性要求非常高。在这些场合,任务必须在给定的时间内响应并正确完成。而实时操作系统RTOS(Real Time OperatiON System)本身的运行,必然会引起性能的下降,在任务数量增加时,这种下降更加明显。例如,使用uC/OS-II实时操作系统在PowerPC处理器上运行,在TimeTick(时钟节拍)周期为10 ?滋s、运行64个任务的情况下,TimeTick中断函数占用的CPU时间已达到42%[1]。

目前,RTOS软件层面的研究已经很成熟,可有效提高RTOS性能的方法有以下几种:

(1)提高处理器的运行频率[2]。这对功耗相当敏感的嵌入式系统并不是好方法。同时高频时钟所引起的电磁干扰对电路板布线的要求也更高;

(2)设计专用于RTOS系统服务的硬件。硬件对相同的操作可并行处理。如果设计一种硬件,在任务数量或TimeTick频率增加的情况下,系统也能在固定的时钟周期内完成所有任务域的更新,从而降低RTOS运行所占的CPU时间。

本文设计了实时系统加速RTA(Real-Time Acceleration)模块,对任务调度和系统时间管理进行硬件化,降低了任务中断时间,并对最终的测量数据进行对比,得出结论。

1 RTA的硬件设计

本文的硬件平台使用OR1200[3] CPU,它是一款由OpenCores网站维护的开放源代码CPU,内部结构可见可修改,且没有版权问题。RTA模块作为从设备连接到Wishbone总线[4]上。在RTA模块中,由硬件实现任务管理和时间管理。RTA中的寄存器全部映射到内存空间上,软件通过对寄存器的访问来控制RTA模块的运行。
该专用硬件可分成如下两部分:

(1)任务管理和时间管理部分。RTA模块支持64个任务,使用基于优先级的调度策略,每个任务有唯一的优先级。RTA只在需要任务切换时才中断CPU。时间延时的最小单位是TimeTick(时钟节拍),最长时间延时可达65 535个TimeTick;

(2)用于产生TimeTick信号的Timer(计时器)。RTA必须有独立的Timer为其产生TimeTick信号。在本文中,利用OR1200自带的Timer完成此工作。

本文使用的系统是在μC/OS-II实时操作系统基础上改进实现的。该RTOS由Micrium网站维护,已经应用于商业产品[5]。整个软硬件的实现在FPGA开发板DE2-70上完成,系统时钟频率为25 MHz。

1.1 任务管理和时间管理

任务管理和时间管理的设计框图如图1所示。

每个任务都有4个域:TaskValid、OSTCBStat、OSTCBDly和OSTCBStatPend。每个任务都有一个任务就绪标志TaskReady,RTA通过PrioBitmapToBinary模块找到最高的优先级并送给HighestPrio。在CPU响应外部中断或者给调度器上锁时,可以通过OSIntNesting和OSLockNesting寄存器关闭RTA的中断。

μC/OS-II实时系统内核中,任务调度基于TimeTick完成,由于程序只能顺序执行,任务的timedly域更新也是顺序执行的,从而使得调度函数的执行时间与运行的任务数量有关。在RTA模块中,基于TimeTick的调度机制并没有改变,只是原型中顺序执行的timedly更新,在硬件中可以同时执行。在使用RTA模块的系统中,移去了软件中的用于任务调度的数据结构,相应地在硬件中予以实现。

当有更高优先级的任务进入就绪态时,就会产生RTA中断。硬件实现上,当进入就绪态的上个时钟周期的最高优先级和本时刻的最高优先级不同时,便产生中断信号。在μC/OS-II中,每个TimeTick时刻都会发生中断,这就需要更频繁地保存CPU寄存器,相比本文提出的方法,浪费了更多的CPU时间。

1.2 TimeTick信号的产生

RTA的运行需要一个可配置的Timer来为其产生TimeTick信号。在本文中,通过对OR1200进行改造,利用其内部的Timer产生中断信号作为RTA任务调度的标准时钟节拍,而将RTA的中断信号连接到原来Timer在CPU的接口处。这样,CPU通过Wishbone总线可对Timer进行读写,且RTA产生的中断不会占用可编程中断控制器PIC(Programmable Interrupt Controller)。改造后的框图如图2所示。


1.3 软件实现

因为任务数据结构的改变,源码中所有涉及到任务数据结构的函数都要进行修改。由于任务调度和时间处理由RTA模块执行,原先执行TimeTick的中断函数要作相应修改,在中断时,只需读取RTA中HighestPrio寄存器,然后做上下文切换,运行该优先级的任务即可。

2 实验结果

本实验使用的CPU为OR1200,CPU和所有的外设都通过Wishbone总线连接,系统时钟为25 MHz。在Altera的Cyclone II FPGA平台上,使用Quartus8.1工具对RTA进行布局布线,其共占用4 197个逻辑单元LE(Logic Element)。

任务响应时间是RTOS性能的一个重要指标,其定义为:从任务中断产生的时刻起,到恢复任务执行之间的时间。试验中,利用自定义的Timer作为测量标尺,在2个测试点各读取一次,相减后的数值再乘以此Timer的周期,便得到该段测试时间。图3是有硬件加速和无硬件加速的任务响应时间的测试结果,单位是系统时钟周期。

从图中3可以看出,在无硬件支持的RTOS中,随着任务数的增加,任务响应时间也随之呈线性增加。其原因是,程序顺序执行,在无硬件加速的情况下,RTOS内核在每个TimeTick中断都要对任务的延时域进行顺序更新。随着任务的增加,延时域的处理时间也增长。有硬件加速支持时,任务响应时间缩短,而且与正在运行的任务数量没有关系。这是因为所有任务的延时域都同时更新,在一个时钟周期内即可全部完成。所以使用RTA模块后,降低了系统本身占用CPU的时间,提高了系统的可预测性。可见,在添加RTA模块后RTOS的性能得到了提高。

本文将μC/OS-II系统中调用频繁的任务调度和时间管理采用硬件实现,达到了降低系统负载、稳定任务响应时间、提高系统可预测性的目的。实验结果表明,使用本硬件,任务中断响应时间可降低85.8%。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

摘 要 :针对 CPS 系统中能否高效调度传感器节点资源,提出一种基于混合蛙跳算法的任务调度算法。混合蛙跳算法兼具模因演化算法和粒子群算法的特点,同时也存在容易陷入局部最值、收敛速度不佳的缺点。针对这些问题,结合 CPS...

关键字: CPS 传感器节点 任务调度 混合蛙跳算法 优化策略 粒子群算法

  本文主要搭建一个多生理参数测量系统的数据处理平台,在FPGA中嵌入一个32位Nios II软核处理器,用于控制数据的传输、存储及显示。主要完成了此数据处理平台硬件系统的定制及编写相应程序,以控制数

关键字: NIOS ii 生理

据9月9日消息,索尼Xperia 5 Ⅱ将于9月17日正式发布。 该机现已通过FCC认证,FCC文件显示索尼Xperia 5 Ⅱ配备的充电器型号为Sony UCH32,支持18W快充。

关键字: xperia 5 1 ii

7 月 14 日消息 苹果 Apple IIe 电脑在 37 年前的 1983 年问世,但不要以为它不能胜任现代的任务。有 Twitter 用户近日展示了如何让 Apple IIe 实现现代化的的任

关键字: apple ii

华硕在2019年经历了一年的复苏,其坚实的Zenfone 6和强大的ROG Phone II游戏引擎将于今年问世。 尽管Zenfone在11月收购了Android 10,但该公司现在正为ROG Phone II推出稳定的...

关键字: 10 Android ii phone rog 华硕

Linux内核对其驱动程序进行了修改,来支持Macintosh II系统上的Apple Desktop Bus。

关键字: ii Linux macintosh 驱动

在这篇文章中,小编将为大家带来华硕全新ROG Zenith II Extreme的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: extreme ii rog zenith 华硕 tda21490

不考虑这两年来处理器从4核达大幅提升到8核甚至16核的情况,单从CPU性能来看,大家普遍认为过去几年CPU都是在挤牙膏升级,原因都懂得。那问题来了,如果是跨度十年的话,那如今的CPU到底比09年的CP

关键字: 810 ii x86 处理器 挤牙膏 酷睿 phenom

主板产品一直是人们的关注焦点之一,因此在这篇文章中,小编将为大家带来华硕ROG ZENITH II EXTREME。如果你想了解它的详细内容,请继续阅读。

关键字: extreme ii rog zenith 主板 华硕

AMD刚刚发布的第三代线程撕裂者用上了7nm Zen 2,不过接口改为新的sTRX4,必须搭配新的TRX40芯片组主板。 华硕率先发布了三款全新的TRX40主板,分别是玩家国度系列的ROG ZENIT

关键字: extreme ii rog zenith 主板 图赏 三代撕裂者 坐骑
关闭
关闭