当前位置:首页 > 单片机 > 单片机
[导读]ARM的ram包括静态ram,动态ram, TCM---紧耦合内存(TCM: Tightly Coup ledMemories)。

ARM的ram包括静态ram,动态ram, TCM---紧耦合内存(TCM: Tightly Coup ledMemories)。

TCM是一个固定大小的RAM,紧密地耦合至处理器内核,提供与cache相当的性能,相比于cache的优点是,程序代码可以精确地控制什么函数或代码放在哪儿(RAM里)。当然TCM永远不会被踢出主存储器,因此,他会有一个被用户预设的性能,而不是象cache那样是统计特性的性能提高。

TCM对于以下几种情况的代码是非常有用、也是需要的:可预见的实时处理(中断处理)、时间可预见(加密算法)、避免cache分析(加密算法)、或者只是要求高性能的代码(编解码功能)。随着cache大小的增加以及总线性能的规模,TCM将会变得越来越不重要,但是他提供了一个让你权衡的机会

那么,哪一个更好呢?他取决于你的应用。Cache是一个通用目的的加速器,他会加速你的所有代码,而不依赖于存储方式。TCM只会加速你有意放入TCM的代码,其余的其他代码只能通过cache加速。Cache是一个通用目的解决方案,TCM在某些特殊情况下是非常有用的。假如你不认为需要 TCM的话,那么你可能就不需要了,转而加大你的cache,从而加速运行于内核上的所有软件代码.

紧致内存是指片上快速存储区,与片上缓存具有同等的性能,但因为程序可完全控制紧致内存,因而比统计复用的缓存有更好的可预测性。这是ARM5TE引入的特性,目的是通过这一快速的存储区,一方面提高某些关键代码(如中断处理函数)的性能,另方面使存储访问延迟保持一致,这是实时性应用所要求的。ARM6对TCM操作做了进一步的规范。

TCM的应用领域:可预测的实时处理(中断处理)、避免缓存分析(加密算法)、或单纯的性能提高(处理器侧编解码)等。

如同缓存的哈佛结构,指令TCM和数据TCM是分开的。TCM有两种使用方式:作为快缓存使用,和作为本地内存使用。

本地内存

这时,TCM被用作更快速的内存,如同一般的RAM。因为指令段有时也是数据访问的对象,指令TCM实际上是指令数据一体化TCM。对TCM写操作后和后续对此写操作的依赖指令之间必须跟一个阻塞操作。

快缓存(smartcache)

TCM可以配置成当作外部RAM的缓存使用,对应的外部RAM也要设置可缓存标志。如果被缓存的外部RAM可以由多处理器共享,那么TCM是否与共享数据保持一致并没有规定,而由具体实现厂家决定。

TCM与缓存的内容不会自动保持一致,这意味着TCM映射到的内存区域必须是不缓存的区域。如果一个地址同时落在缓存和TCM内,那么访问这一地址的结果是不能预测的。另一个限制是各个TCM必须要配置成不相交的。

TCM的配置

通过CP15的0、1、9号寄存器进行:

0号寄存器

读CP15的0号寄存器,opcode2为2:

MRC p15, 0, Rd, C0, C0, 2

返回TCM状态寄存器的内容,其中,16-18位代表数据TCM个数,0-3代表指令TCM个数。

1号寄存器

ARM6之前,1号寄存器的16位和18位用于使能数据TCM和指令TCM(ARM946,ARM966),ARM6因为可以使用9号寄存器控制每一块TCM的使能状态,所以1号寄存器的这两个位就过时了,应该置1。

9号寄存器

每个TCM都有一个TCM区域寄存器,设置这个寄存器就可以设置TCM的基址和大小。在设置TCM区域寄存器前,需要设置TCM选择寄存器。

下面是访问这些相关寄存器的指令:

ARM Instruction TCM Region Register

MRC/MCR P15, 0, Rd, C9, C1, 0 Data TCM Region Register

MRC/MCR P15, 0, Rd, C9, C1, 1 Instruction/Unified TCM Region Register

MRC/MCR P15, 0, Rd, C9, C2, 0 TCM Selection Register

TCM区域寄存器的结构:

Base Address (Physical Address)[31-12] SBZ/UNP[11-7] Size[6-2] SC[1] En[0]

其中:

En位是使能位,置1时使能此TCM;

SC位置位表示此TCM被用作快缓存(smartcache),清零表示本地内存;

Size字段是只读的,含义如下:

Size Memory Size Memory

filed size field size

0b00000 0K 0b01101 4M

0b00011 4K 0b01110 8M

0b00100 8K 0b01111 16M

0b00101 16K 0b10000 32M

0b00110 32K 0b10001 64M

0b00111 64K 0b10010 128M

0b01000 128K 0b10011 256M

0b01001 256K 0b10100 512M

0b01010 512K 0b10101 1G

0b01011 1M 0b10110 2G

0b01100 2M 0b10111 4G

注意TCM区域寄存器配置出来的各个TCM块不能相交,否则后果不可预测

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭