当前位置:首页 > 工业控制 > 电子设计自动化
[导读] 通过省去基于文件的流程,新工具可提供完整的 RTL 功率探测和精确的门级功率分析流程。在最近发布的一篇文章中,笔者强调了当前动态功耗估算方法的内在局限性。简单来说,当前的方法是一个基于文件的流程,其中包括

 通过省去基于文件的流程,新工具可提供完整的 RTL 功率探测和精确的门级功率分析流程。

在最近发布的一篇文章中,笔者强调了当前动态功耗估算方法的内在局限性。简单来说,当前的方法是一个基于文件的流程,其中包括两个步骤。第一步,软件模拟器或硬件仿真器会在一个交换格式 (SAIF) 文件中跟踪并累积整个运行过程中的翻转活动,或在快速信号数据库 (FSDB) 文件中按周期记录每个信号的翻转活动。第二步,使用一个馈入 SAIF 文件的功率估算工具计算整个电路的平均功耗,或使用 FSDB 文件计算设计时间和空间内的峰值功率(见图 1)。

 

 

图 1. 传统的功率分析根植于基于文件的两步法。

当被测设计 (DUT) 相对较小(约数百万门或更少),且分析周期较短(不超过百万个时钟周期),这些方法可能行得通。上述时间窗口常见于自适应性功能验证环境。

然而,如今的大型 SoC 设计具有数千万或数亿个门来执行嵌入式软件(比如,启动一个操作系统或运行需要数十亿个周期的应用程序),若使用传统方法就会面临以下三大难题:

1. SAIF 文件将变得太过庞大而无法管理,FSDB 文件则更是如此。

2. 文件生成过程慢如蜗牛,短则数小时,长则超过 1 天。

文件加载到功率估算工具的速度也相当缓慢,少则几天,多则超过 1 周。

这一切似乎注定了无法成功。

这一状况随着 Mentor Graphics 在 2015 年 5 月 27 日发布 Veloce 功耗应用程序而发生了改变,这款软件包带有 Veloce 活动图和 Dynamic Read Waveform 应用程序编程接口 (API),接口位于 Veloce OS3 顶部(见图 2)。

 

 

图 2. 操作系统可保护任何应用程序不受下层硬件仿真器的干扰。

Veloce 功耗应用程序解决了影响传统(且有争议)的功耗评估算法速度的一些核心问题。它通过将 Veloce 硬件仿真器紧密集成到功率分析工具中而省去了基于文件的两步流程。

设计团队无需再处理巨大的文件。这意味着,再也没有空间浪费,文件创建和文件加载也将节省大量时间。新方法能够快速、简洁、高效且全面地估算现代 SoC 设计的功耗。

Veloce 活动图

Veloce 活动图在一个简单的图表中映射出了全局设计切换活动随时间的动态变化,例如,在启动 OS 和/或运行动态应用程序时(见图 3)。

 

 

图 3. Veloce 活动图在长时运行中识别焦点区域。

活动图可识别高频切换活动的时间帧,高频切换活动可能给设计团队带来功耗问题。尽管此图表并不独特,但其生成所需的时间要比基于文件的功耗图表快一个数量级。作为一个数据点,对于一个 1 亿门设计、7500 万设计时钟周期的活动图,Veloce 需花费 15 分钟来生成。相比之下,功率分析工具则需要花费超过 1 周的时间来生成类似信息。况且,它们可能还无法处理如此巨量的数据。

随之而来的问题则是:这些峰值出现于 DUT 中的“何处”以及是由“什么”引起的?这可通过 Dynamic Read Waveform API 来回答。

Dynamic Read Waveform API 流程

一旦高频切换活动的时间帧在设计的顶层被识别,设计团队就能放大这些时间帧。用户能够深入到设计的层次结构和嵌入式软件中,从而找到产生此类高频切换活动的根源。为此,用户可以使用 Dynamic Read Waveform API。

Dynamic Read Waveform API 可通过将硬件仿真器中的切换数据实时传送入功率分析工具中,从而取代繁琐的 SAIF/FSDB 文件生成过程。从硬件仿真 SoC,到输入切换数据,再到使用功率分析工具读取切换数据,以及生成对应的功率值,所有操作都是同时运行的。其实际效果是整体性能的飞跃,而这正是启动操作系统和运行真正的应用程序所需要的(见图 4)。

 

 

图 4. Veloce 电源应用程序可加快 Veloce 功耗分析速度,让设计团队在执行生成、分析和估算时一步到位。

作为附加好处,与基于 SAIF 的普通流程相比,Dynamic Read Waveform API 的精度更高,因此可对各内存和 IP 块进行精确的功耗估算。

最关键的一点在于,Dynamic Read Waveform API 支持通过基于软件的测试在系统级进行功耗分析与功耗探测,如果采用基于文件的流程,这几乎是不可能的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

Puttshack 的 Trackaball 以 Nordic nRF54L15 系统级芯片 (SoC) 监控传感器并实现低功耗蓝牙连接,并以nPM2100 电源管理集成电路(PMIC)节省耗电

关键字: SoC 传感器 集成电路

2025年8月21日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 即日起开售Silicon Labs全新xG26系列无线SoC和MCU。xG26片上系统...

关键字: SoC 微控制器 物联网

3系列Secure Vault在第三代无线开发平台产品组合中的SiXG301 SoC上首次亮相,获得了先进物联网保护的最高级别认证

关键字: 物联网 SoC 无线电

基于智能体的新型安全服务通过自主AI智能体降低运营成本,同时加快响应并扩大覆盖范围 2025年,7AI平台已为各安全团队节省22.4万个分析师工时——相当于约112位分析师全年工作量,价值1120万美元 拉斯维加斯2...

关键字: AI 智能体 SoC AGENT

随着高解析度音频应用的不断发展和广泛部署,诸如USB与I2S之间等不同专业接口之间的高品质音频转换需求日益增长,由此带来了实现高性能、高实时性与高灵活性的新挑战。为此,边缘AI和智能音频专家XMOS携手其全球首家增值分销...

关键字: SoC USB 处理器

颠覆设计领域的伦敦创新企业与Ceva合作,为Nothing和CMF子品牌音频产品线增强听觉体验,包括最新发布的Nothing Headphone (1)

关键字: 传感器 蓝牙 SoC

nPM1304 PMIC 是对 Nordic 屡获殊荣的 nPM1300 PMIC 的补充,为智能戒指、人体传感器和其他小尺寸电池应用提供了高度集成的超低功耗解决方案和精密电量计

关键字: 电源管理 传感器 SoC

能量收集(Energy Harvesting)并不是一个时兴的名词,但是物联网技术的进步以及诸如Silicon Labs(芯科科技)的物联网产品以及开发套件,使能量收集技术的应用也变得更加的实际和广阔。例如非常便于应用的...

关键字: 物联网 SoC 传感器

Holtek全新推出2~3节锂电池充电与电机驱动二合一(BLDC)专用SoC Flash MCU BD66FM6352A。该产品特色为具备高性价比,整合MCU、LDO、三相26V P/N预驱、VDC Bus电压侦测及零待...

关键字: SoC MCU 电机驱动

新的任命符合公司以客户交付为焦点、以工程技术创新为核心的战略方向。

关键字: SoC AI 数据中心
关闭