当前位置:首页 > 工业控制 > 电子设计自动化
[导读]认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认 识还不够深入。

差分信号PCB布局布线时有几个常见误区,我们来梳理一下:

误区一:

认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认 识还不够深入。虽然差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作 为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了 有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路。

在PCB 电路设计中,一般差分走线之间的耦合较小,往往只占10~20%的耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。当地平面 发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会提供主要的回流通路。尽管参考平面的不连续对差分走线的影响没有对普通的单端走线来的严重, 但还是会降低差分信号的质量,增加EMI,要尽量避免。也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制差分传输中的部分共模信号,但从理论 上看这种做法是不可取的,阻抗如何控制?不给共模信号提供地阻抗回路,势必会造成EMI 辐射,这种做法弊大于利。

所以要保持PCB地线层返回路径宽而短。尽量不要跨岛(跨过相邻电源或地层的分隔区域。)比如主板设计中的USB和SATA及PCI-EXPRESS等最好不要有跨岛的做法。保证这些信号的下面是个完整地平面或电源平面。

误区二:

认为保持等间距比匹配线长更重要。在实际的PCB 布线中,往往不能同时满足差分设计的要求。由于管脚分布,过孔,以及走线空间等因素存在,必须通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是 差分对的部分区域无法平行,其实间距不等造成的影响是微乎其微的,相比较而言,线长不匹配对时序的影响要大得多。再从理论分析来看,间距不一致虽然会导致 差分阻抗发生变化,但因为差分对之间的耦合本身就不显著,所以阻抗变化范围也是很小的,通常在10%以内,只相当于一个过孔造成的反射,这对信号传输不会 造成明显的影响。而线长一旦不匹配,除了时序上会发生偏移,还给差分信号中引入了共模的成分,降低信号的质量,增加了EMI。

可以这么说,PCB 差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据设计要求和实际应用进行灵活处理。同时为了弥补阻抗的匹配可以采用接收端差分线对之间加一匹配电阻。 其值应等于差分阻抗的值。这样信号品质会好些。

所以建议如下两点:

(A)使用终端电阻实现对差分传输线的最大匹配,阻值一般在90~130Ω之间,系统也需要此终端电阻来产生正常工作的差分电压;

(B)最好使用精度1~2%的表面贴电阻跨接在差分线上,必要时也可使用两个阻值各为50Ω的电阻,并在中间通过一个电容接地,以滤去共模噪声。

通常对于差分信号的CLOCK等要求等长的匹配要求是+/-10mils之内。

误区三:

认为差分走线一定要靠的很近。让差分走线靠近无非是为了增强他们的耦合,既可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界的电磁 干扰。虽说这种做法在大多数情况下是非常有利的,但不是绝对的,如果能保证让它们得到充分的屏蔽,不受外界干扰,那么我们也就不需要再让通过彼此的强耦合 达到抗干扰和抑制EMI 的目的了。如何才能保证差分走线具有良好的隔离和屏蔽呢?增大与其它信号走线的间距是最基本的途径之一,电磁场能量是随着距离呈平方关系递减的,一般线间 距超过4 倍线宽时,它们之间的干扰就极其微弱了,基本可以忽略。此外,通过地平面的隔离也可以起到很好的屏蔽作用,这种结构在高频的(10G 以上)IC 封装PCB 设计中经常会用采用,被称为CPW 结构,可以保证严格的差分阻抗控制(2Z0)。

差分走线也可以走在不同的信号层中, 但一般不建议这种走法,因为不同的层产生的诸如阻抗、过孔的差别会破坏差模传输的效果,引入共模噪声。此外,如果相邻两层耦合不够紧密的话,会降低差分走 线抵抗噪声的能力,但如果能保持和周围走线适当的间距,串扰就不是个问题。在一般频率(GHz 以下),EMI也不会是很严重的问题,实验表明,相距500Mils 的差分走线,在3 米之外的辐射能量衰减已经达到60dB,足以满足FCC 的电磁辐射标准,所以设计者根本不用过分担心差分线耦合不够而造成电磁不兼容问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在高速电路设计领域,差分信号传输以其卓越的抗干扰能力、对 EMI 的有效抑制以及精准的时序定位,成为保障信号稳定可靠传输的关键技术手段。随着电子设备不断朝着小型化、高性能化方向发展,PCB(Printed Circuit...

关键字: 差分信号 抗干扰 耦合电容

在深入探讨晶体时钟信号能否走成差分线之前,我们需要先明晰什么是晶体时钟信号以及差分线的概念。晶体时钟信号源自晶体振荡器(晶振),晶振利用晶体的压电效应,在外加交变电压时,晶片机械变形产生振动,进而生成周期性振荡信号,为数...

关键字: 晶体时钟信号 振荡器 差分信号

在现代高速数字电路和通信系统中,差分信号传输技术凭借其出色的抗干扰能力、高噪声容限以及低电磁辐射等优势,得到了广泛应用。而在差分线的设计与应用中,常常会在差分线之间并联电容,这一看似简单的电路设计,实则蕴含着诸多重要作用...

关键字: 差分信号 电磁辐射 特性阻抗

RS-485,作为一种广泛应用的差分信号传输标准,因其传输距离远、抗干扰能力强、支持多点通讯等优点,在工业自动化、智能建筑、交通运输等领域得到了广泛应用。在构建RS-485网络时,端接技术扮演着至关重要的角色,它直接影响...

关键字: 差分信号 RS-485 通信

在现代电子系统中,差分信号因其高信噪比、强抗共模噪声能力和低二次谐波失真的特性,被广泛应用于驱动模数转换器(ADC)、双绞线电缆信号传输、高保真音频信号调理等多个领域。然而,许多实际信号链中仍以单端信号为主,因此,将单端...

关键字: 差分信号 二次谐波 模数转换器

单端信号是相对于差分信号而言的,单端输入指信号有一个参考端和一个信号端构成,参考端一般为地端。

关键字: 单端信号 差分信号

在现代电子系统中,差分信号因其卓越的抗噪声能力、高信噪比和低二次谐波失真特性,在高性能ADC驱动、高保真音频信号处理等领域得到了广泛应用。然而,传统的单端信号输入方式往往难以满足这些高精度需求。为了克服这一挑战,研究人员...

关键字: 差分信号 二次谐波 输出共模

知识体系的复杂性:模电涉及更多的专业知识和技能,包括半导体物理、放大器原理、负反馈技术、频率响应分析等,而电路分析主要涉及基本电路元件的行为和分析。

关键字: 模电 差分信号 时钟数据

RS-485总线是一个定义平衡数字多点系统中的驱动器和接收器的电气特性的标准,该标准由电信行业协会和电子工业联盟共同定义。它采用差分信号传输方式,具有强大的抗干扰能力和长距离传输特性。

关键字: rs-485 差分信号

在下述的内容中,小编将会对测试测量仪器示波器的相关消息予以报道,如果示波器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 示波器 测试测量 差分信号
关闭