当前位置:首页 > 单片机 > 单片机
[导读]编辑导读:利用微处理器监控电路提高单片机系统与掉电保护电路的可靠性|基于双单片机通信的无刷直流电动机控制系统|基于MSC1211单片机的RFID 接收系统设计|基于87C196实现的快速无功电流检测|ST9+系列单片机I2C总线驱

编辑导读:利用微处理器监控电路提高单片机系统掉电保护电路的可靠性|基于双单片机通信的无刷直流电动机控制系统|基于MSC1211单片机的RFID 接收系统设计|基于87C196实现的快速无功电流检测|ST9+系列单片机I2C总线驱动程序实现|单片机的Proteus虚拟仿真|一种智能型兆欧表的设计|利用16C554实现主从式单片机远距离通信扩展|利用VB实现PC机与多单片机通讯|专用条形码无线扫描器设计|
正文:

    [摘 要] 本文提出了掉电保护与系统复位联动,实现高度可靠的掉电保护并提高单片机系统可靠性的方法。给出了用MAX791微处理器监控电路设计的带掉电保护的单片机应用系统。
    [关键词] 微处理器;监控电路;掉电保护;可靠性。

1 问题的提出

     在以单片机为核心的智能仪表及过程控制系统中常常需要长时间保存实时参数。通常可采用E2PROM、FLASH MEMORY以及以随机存贮器为基础内置电池的非易失芯片来实现。E2PROM、 FLASHMEMORY属于可在线修改的ROM器件,它解决了应用系统中实时参数掉电保存的难题,但这类芯片写入速度慢(ms级),擦写次数有限(万次级),有些器件擦写次数虽达百万次,对某些应用系统而言,其写入次数仍然是有限的。因此这类芯片只能用在需要保护的数据量小且写入不频繁的系统中。对那些需要大容量高速反复存取实时参数的系统,只能用随机存贮器RAM加掉电保护电路实现。掉电保护系统一般由低功耗的CMOS-RAM、供电电路及控制电路组成。供电电路保证系统正常时由电源给RAM供电,掉电时自动转到备用电池给RAM供电;控制电路保证在电源供电时RAM正常读写,电池供电时RAM处于保护状态,特别要防止系统上电/掉电过程中的瞬间干扰对RAM芯片的写入而改变RAM中的数据。基于RAM的掉电保护电路既具有RAM的高速写入、写入次数无限制的特点,又能象ROM那样长时间保存数据,因此得到了广泛的应用。实现上述原理的掉电保护方法很多,某些厂商甚至以RAM为基础内置电池开发出自掉电保护芯片,用这类独立的掉电保护芯片或电路构成的单片机系统,实际应用中有时会出现工作不稳定现象。经分析发现:若系统电源的变化使RAM先处于保护状态,而系统尚未复位,单片机仍正常工作,这时就出现写不进,读不出的现象,引发系统故障。对于这种单片机复位电平与掉电保护电平不一致而影响系统可靠性的问题,本文提出用微处理器监控电路使单片机复位与掉电保护联动的解决方案。RAM在单片机复位时处于保护状态,工作时正常存取,从而有效地解决前述问题。

2 MAX791[1]芯片介绍
   MAX791是MAXIM公司生产的高性能微处理器电源监视电路,它与AMDA公司的AMD791性能相同可以互换。功能包括微处理器复位、备用电池切换、看门狗电路、CMOS-RAM写入保护及电源故障告警等,逻辑框图如图2—1[1]。图中VCC、VOUT分别为电源输入、输出,VBATT为电

池输入,为电源低输出,为RAM芯片使能输入与输出,为复位输出,为人工复位输入,为低将强制RESET有效,SWT、WDI、、分别为看门狗定时设置、触发输入、超时输出和超时脉冲。PFI和分别为电源故障输入和输出,PFI低于1.25 V时变低。

    MAX791的复位时序如图2—2[1]所示。

3 掉电保护电路设计
3.1 硬件设计
图3—1给出了一种带掉电保护的MCS-51[2]、[3]单片机应用系统的原理图。  
76C88是CMOS型的RAM芯片,其容量为8K×8,它有两个片选端和CS2,只有为低电平同时CS2为高电平时芯片才被选中。因此将CS2接MAX791的输出端,同时写允许信号通过MAX791的使能控制输入端
和输出端,间接从MCS-51的引入,保证在系统复位期间不能读写,有效地保护了76C88中的数据。结合图2—2 MAX791的复位时序,图3—1的电路工作原理分析如下。  

    上电过程:当VCC从OV上升到复位门限1.65V,

输出仍将维持有效电平200ms的时间,保证电源电压正常后系统的有效复位。

有效期间76C88的CS2处于低电平,即片选信号无效,保证上电过程中片内数据不被改写。当VCC大于VBATT时,VOUT自动切换到与VCC相接,76C88转由VCC供电。

    正常工作:在此状态下,CS2为高电平,通过MAX791的使能电路复制,单片机可对76C88进行读写操作。为防止程序跑飞,提高系统的可靠性,在程序中插入看门狗触发指令,即P1.7的置位/复位指令,程序正常执行时经常触发WDI。当程序跑飞超过1.6 s不能触发看门狗时,输出低电平,通过MR使系统复位。在此期间VCC通过二级管D1、电阻R1给后备电池充电。

 掉电过程:当VCC从正常电压下降到复位门限4.65V时,立即有效,CS2变成低电平,76C88进入保护状态,保证掉电过程中片内数据不被改写。当VCC小于VBATT时,VOUT自动切换到与VBATT相接,76C88转由后备电池供电。
对多数应用系统,上电复位后程序从头开始即能满足要求,但对某些系统如由多道工序组成的流水线控制系统,突然停电后再来电时应接着原来的工序往下执行,这就要求计算机记录停电瞬间的系统参数,重新来电时根据记录的参数继续往下执行。
    利用MAX791的电源报警功能,能方便地达到这一目的:分析图2-2,当VCC下降到4.65V+150mV时,产生负跳变,向单片机发中断请求,因贮能效应,VCC从4.8 V降到4.65 V有几个ms的时间,足够单片机执行几百条甚至上千条指令,利用这段时间在中断服务程序中保护断点及实时参数。重新来电后转入断点继续执行。
3.2 软件设计  
图3—1所示单片机系统的软件可分成主程序和电源报警中断服务程序两部分。主程序中必须插入指令经常触发WDI,且间隔时间不能超过1.6s,报警中断必须设置为非屏蔽中断没有可以将设置成唯一的一个高级中断以替代。程序流程图如图3—2。

4 结束语

  将复位与掉电保护联动,能有效解决掉电保护与复位不协调引起的系统工作不稳定现象,提高掉电保护电路及单片机应用系统的可靠性。以MAX791微处理器监控电路构成的单片机掉电保护系统,在电力、石化等工业现场应用效果十分理想。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这篇文章中,小编将为大家带来微控制器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 微控制器 微处理器 CPU

2022年6月17日,爱普特微电子受邀参加由Aspencore主办的全球MCU生态发展大会。此次会议以“国产创新 智能应用”为主题,汇聚了MCU 业内知名技术、应用专家和 MCU 产业链上下游企业,共同探讨最新MCU技术...

关键字: 爱普特微电子 MCU 微处理器

数字居民时代,半导体芯片几乎贯穿于我们生活的各个环节。不管是从微波炉到电脑、手机、计算机中央处理器等电子设备上都安装有各种各样的芯片。当代微处理器或图形处理器上可容纳超过500亿个晶体管,故障率仅接近十亿分之一。为了达到...

关键字: 半导体 芯片 微处理器

在这篇文章中,小编将为大家带来微控制器MCU的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 微控制器 MCU 微处理器

今天,小编将在这篇文章中为大家带来开发板嵌入式微处理器的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 开发板 微处理器 嵌入式微处理器

随着卫星运营商在轨获取的数据越来越多,他们更愿意在载荷上处理这些数据并提取有价值的信息,而不是将大量数据下行传送到地面的云上进行后处理。现有宇航级半导体技术和/或射频带宽限制了可实时处理的数据量。我知道一些客户由于下行链...

关键字: Teledyne e2v 微处理器 FPGA

1969年,美国数字设备公司研制出了第一台可编程逻辑控制器--PDP14。并在美国通用汽车公司的生产线上试用成功,取代生产线上的继电器控制系统,开创了工业控制的新纪元。

关键字: 微处理器 网络通信

现场可编程门阵列(FPGA)、片上系统(SoC)和微处理器等数据处理IC不断扩大在电信、网络、工业、汽车、航空电子和国防系统领域的应用。这些系统的一个共同点是处理能力不断提高,导致原始功率需求相应增加。设计人员很清楚高功...

关键字: ADI FPGA SoC 微处理器

芯片组(英语:Chipset)是一组共同工作的集成电路“芯片”,并作为一个产品销售。它负责将计算机的核心——微处理器和机器的其它部分相连接,是决定主板级别的重要部件。

关键字: 芯片组 微处理器 机器

单片机

21600 篇文章

关注

发布文章

编辑精选

技术子站

关闭