良好焊接的焊点应呈现出金属光泽,锡面覆盖率达到80%以上,爬锡高度需超过元件端头的1/2。同时,焊点应保持清洁,无指纹、无水印、无松香等污染物,且无连焊、假焊、冷焊、溅锡等缺陷。此外,焊锡坡度应呈45度的半弓形凹下状态,焊点(经过剪脚处理后)的高度则应控制在1.5~2mm的范围内。满足这些条件的焊点,方可称为良好焊接。
编码器实质上是一种旋转式传感器,它能够将旋转部件的位置和位移物理量转化为数字脉冲信号。这些脉冲信号随后被控制系统捕获并处理,从而发出指令,实现对设备运行状态的精准调整。值得一提的是,编码器与齿轮条或螺旋丝杠的组合,还能用于测量直线运动部件的位置和位移物理量。
PLC是一种数字运算操作的工业控制装置,通过可定制的逻辑程序控制现场设备的运行。它能够在恶劣的工业环境中稳定运行,完成对输入信号的实时处理,将逻辑运算的结果输出到控制设备上。
器件失效的元凶主要包括电气过应力(EOS)、静电放电(ESD)、温度异常、机械应力、环境腐蚀及设计缺陷等。
加密算法分对称加密和非对称算法,其中对称加密算法的加密与解密密钥相同,非对称加密算法的加密密钥与解密密钥不同,此外,还有一类不需要密钥的散列算法。
电磁干扰(EMI)超标:医疗设备的电磁干扰可能对其他设备或系统造成干扰,导致性能下降或误操作。这通常是由于设备设计或制造过程中的不当措施引起的。
EMI测试整改是在电子产品研发和生产过程中,针对电磁干扰问题进行的专项改进工作。通过整改,可以有效降低产品在工作时产生的电磁辐射,减少对周边设备的干扰,提高产品的电磁兼容性。同时,EMI测试整改也是产品通过国内外电磁兼容性认证的必要条件,对于产品进入市场具有重要意义。
环境应力筛选试验(ESS试验)是考核产品整机质量的常用手段。在ESS试验中,随机振动的应力旨在考核产品在结构、装配、应力等方面的缺陷。体积较大的电容,在焊接后,如果没有施加单独的处理措施,在振动试验时容易发生引脚断裂的问题。这个实验模拟的是运输振动、运行振动、冲击碰撞跌落的应力条件。
PCB设计在EMI抑制中起着关键作用。合理的布局布线能够有效减少信号的电磁辐射和相互干扰。首先,应将功率电路和控制电路进行物理隔离,避免功率电路中的大电流、高电压信号对控制电路造成干扰。功率器件和电感等高频器件应尽量靠近,以缩短电流回路,减小回路面积。因为回路面积越大,产生的电磁辐射越强。同时,在布局时要注意输入输出端口的位置,避免输入输出信号交叉,防止形成干扰路径。在布线方面,电源线和地线应尽可能加粗,以降低线路阻抗,减少电压降和电流波动。对于高频信号走线,应尽量缩短长度,并采用单点接地的方式,避免形成接地环路,产生共模干扰。此外,可以在PCB上设置屏蔽层,将敏感电路和高频电路进行屏蔽,减少电磁耦合。
导电阳极丝(CAF,Conductive Anodic Filamentation)是一种在PCB中可能发生的电化学现象。当PCB处于高温高湿环境时,在电压差的作用下,内部的金属离子沿着玻纤丝间的微裂通道与金属盐发生电化学反应,从而发生漏电的现象。
稳压器只能起到稳定直流电压的作用,它无法改变交流电压的大小和方向,也就无法替代变压器的作用。而变压器虽然自身并没有稳压功能,但是却能够改变电压大小和方向,使得电力设备能够正常传输和分配。
随着单片机系统越来越广泛地应用于消费类电子、医疗、工业自动化、智能化仪器仪表、航空航天等各领域,单片机系统面临着电磁干扰(EMI)日益严重的威胁。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。
ARM系统几乎都采用Linux的操作系统,而且几乎所有的硬件系统都要单独构建自己的系统,与其他系统不能兼容,这也导致其应用软件不能方便移植,这一点一直严重制约了ARM系统的发展和应用。GOOGLE开发了开放式的Android系统后,统一了ARM结构电脑的操作系统,使新推出基于ARM结构的电脑系统有了统一的、开放式的、免费的操作系统,为ARM的发展提供了强大的支持和动力。
阻抗匹配(Impedance matching)是微波电子学里的一部分,是高频设计中的一个常用概念,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。
PCB烘烤的程序其实还蛮麻烦的,烘烤时必须将原本的包装拆除后才能放入烤箱中,然后要用超过100℃的温度来烘烤,但是温度又不能太高,免得烘烤期间水蒸气过度膨胀反而把PCB给撑爆。