当前位置:首页 > 工业控制 > 电子设计自动化
[导读] 今天我们来讲的是SDRAM的架构以及设计,这也是小墨第一次接触架构,也谈不上给大家讲,就是把我理解的当做一个笔记分享给大家,我也试着做了一个SDRAM 的架构word文档,在文章的后面,喜欢的朋友可以下载下来看一下

 今天我们来讲的是SDRAM的架构以及设计,这也是小墨第一次接触架构,也谈不上给大家讲,就是把我理解的当做一个笔记分享给大家,我也试着做了一个SDRAM 的架构word文档,在文章的后面,喜欢的朋友可以下载下来看一下,有什么错误也请积极指正,毕竟我也是没有老师教,也是自己摸索的,难免有些不合理的地方。

一、SDRAM 工作部分

1、上电初始化

我们先来看第一部分,上电初始化。上电初始化我们知道,上电之后我们需要等待200us的稳定期,这段时间我们可以用一个定时器来计数,这没什么问题,然后进入的是预充电部分,这个时候,预充电的时候,sdram_cmd模块会检测此时的初始化状态机的状态,若处于预充电状态,那么sdram_cmd模块向SDRAM发命令,具体命令sdram的datasheet里面有,发的是一个precharge,即预充电,发完命令之后,需要等待一段时间,来确保这个命令被SDRAM捕获,这等待的时间,特权老师用的方式我觉得很好

用一个宏定义,当计数器计数到相应的时间后,预充电完成参数置位 即end_trp 置位,下面的用法也是一样,即当初始化状态机进入预充电状态i_pre时,计数器开启,开始计数,计数完成,也就是预充电结束的时候,计数器复位,这个复位的控制,可以用case语句来检测初始化状态机的状态,在相应的状态给予相应的复位与置位

接下来是8个自刷新,操作和预充电一样

到了模式寄存器的配置阶段,我们需要选定L_bank,以及SDRAM工作模式的配置,当sdram_cmd模块检测到初始化状态机到达模式寄存器配置阶段时,我们的给SDRAM的sdram_bank端口赋相应的值,并且设置地址总线

当初始化结束的时候,标志位init_done置位,告诉工作状态机,初始化状态机已经结束,进入工作状态。下面是我用word做的上电初始化的状态转移图

2、自刷新

初始化结束之后,SDRAM为了防止数据丢失,要进行自刷新,上一篇文章已经讲过了,刷新2^12行需要64ms,也就是每15us刷新一行,也就是我们需要每15us发送一次自刷新请求给SDRAM工作状态机,状态机一旦检测到自刷新请求信号,就告诉sdram工作模块,然后工作模块就向SDRAM发送自刷新命令,即CMD_A_PEF

下面是自刷新的状态转移图

3、读写状态

初始化结束以后,SDRAM就处于工作状态,每15us进行一次自刷新,这个时候,如果想要读或写数据的话,即向工作状态机sdram_work_FSM发送读写请求,如果是读请求,那么工作状态机进入行有效状态,也即激活状态w_active,此时,sdram_cmd模块会发送行有效命令,即CMD_ACTIVEA

同时,我们需要将我们的12位行地址送给我们的sdram地址总线sdram_addr,然后便是一个等待时间段,TRCD,这个时间段里我们是不需要做什么工作的,只需等待TRCD结束

TRCD结束的时候,工作状态机进入读状态,此时,我们需要发送列地址选中我们的存储单元,并告诉sdram_cmd模块发送读命令,这个过程是读命令和列地址同时发送的。我们知道,读命令发出之后,会进入潜伏期TCL。

这个状态我们也不需要做什么,因为我们在模式寄存器配置阶段已经将各种参数配置好了,包括什么潜伏期长,突发读写长度之类的,等到潜伏期结束之后,SDRAM会自动进行读数据,而且读的数据长度会跟我们之前设置的一样长,这个读数据的状态需要时间,即我们的工作状态机工作在w_rd状态,等待8个时钟周期之后,所有的数据都已经被送到数据总线。

这个时候我们需要等一会,因为我们在发送读命令的时候,A10是置1的,也就是说,每次读写完之后要自动进行预充电,从而才可以打开新的工作行,这时,我们的工作状态机即进入了w_rwait状态,等到预充电结束,才完成一次读操作,返回初始状态,等待下一个请求的到来

下面是读写状态转移图,由于写状态只是没有潜伏期,写完之后有一个写回延时,其他地方与读状态相同,我就不再介绍了

二、模拟信号产生部分

我们先来想一下我们的要想测试我们的SDRAM控制器是否正确,都需要什么测试参数吧

1、 首先我们需要发送读写地址对吧,但是我们需要有一个间隔,即每隔一段时间发送一次写地址,为什么呢?因为我们之前在模式寄存器配置的时候,定义了突发读写的长度为8,也就是我们发送一个地址,那么sdram会在连续的8个地址中连续写8次数,我们如果要再发送地址,需要等到这8次地址写完之后再发送下一个地址这个延时大概为640ns,也就是计数器为什么要计到3f的原因,下一个地址的发送就需要比之前的地址大8了,比如第一次我发送的是0地址,那,隔一段时间之后,我就需要发送8地址了。

读地址也一样,当写地址写满了之后,让地址清零,从零地址读起即可

还有再解释一下,特权老师为什么定义22位的模拟地址,22位的模拟地址包括2位的L_BANK的地址,12位行地址和8位列地址。有人会问,为什么是行地址和列地址分开呢,不是行列地址共用吗?注意这里只是模拟地址,到时候我们给地址总线赋值的时候是分开赋值的

2、然后我们需要产生递增数据,每640ns产生8个数即可

3、在发送递增数据之前,我们需要发送写请求信号,这个写请求信号是要发送到我们接下来要讲的FIFO里面,发送写请求之后,数据进入FIFO,注意,这里的写请求是发送给FIFO的,不是发送到SDRAM的,SDRAM的写请求是由FIFO发出去的

有人会问,写请求有了,是不是还该有读请求,要知道,我们的数据是先写到FIFO里面,再有SDRAM对FIFO进行读操作,将写进FIFO的数据再送到SDRAM,而我们从SDRAM中读回的数据,同样要写到FIFO里面,然后我们再从FIFO里面读。是不是有人会问,这不是多此一举吗?其实不然,要知道我们的SDRAM是工作在100M的时钟频率下,而且是有相位偏移的,对我们FPGA来说是一个异步时钟,如果我们不采用FIFO的形式,那很容易发生亚稳态问题,导致系统不稳定

三、数据缓存部分

1、写FIFO

我来解释一下,写入时钟,也就是我们FPGA的时钟,50MHZ,在这个时钟频率下,我们需要给FIFO发送写请求和递增数据,wrusedw反映了我写入FIFO的占用量,当sdram工作状态机检测到写请求之后(FIFO发出的写请求),会产生一个响应,告诉FIFO要读数据了,这个响应作为FIFO的读信号,在100MHZ的时钟频率下,将我们写入的数据读走,送到SDRAM数据总线上

2、读FIFO

读FIFO跟写FIFO相反,写FIFO时钟为100MHZ,在这个时钟频率下,我们将从SDRAM中读回的数据写到FIFO里面,注意这里我们还用了wrusedw,来反应写FIFO的占用量,也就是我们从SDRAM里读了多少数据,然后在50MHZ的时钟下,将从SDRAM读回的数据采集下来,送到显示模块来验证是否是递增数据,这个显示模块我们用数码管来显示,比较方便,为了观察清楚,我们可以在数码管显示模块,每隔1S种发送一次读FIFO请求,这样在数码管上,会每隔1秒钟显示一个递增的数据了

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年8月21日,深圳将迎来一场聚焦FPGA技术与产业应用的盛会——2025安路科技FPGA技术沙龙。本次沙龙以“定制未来 共建生态”为主题,汇聚行业...

关键字: FPGA 核心板 开发板

在现代电子系统中,现场可编程门阵列(FPGA)凭借其开发时间短、成本效益高以及灵活的现场重配置与升级等诸多优点,被广泛应用于各种产品领域。从通信设备到工业控制,从汽车电子到航空航天,FPGA 的身影无处不在。为了充分发挥...

关键字: 可编程门阵列 FPGA 数字电源

2025年8月4日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 即日起开售Altera®的Agilex™ 3 FPGA C系列开发套件。此开...

关键字: FPGA 边缘计算 嵌入式应用

内窥镜泛指经自然腔道或人工孔道进入体内,并对体内器官或结构进行直接观察和对疾病进行诊断的医疗设备,一般由光学镜头、冷光源、光导纤维、图像传感器以及机械装置等构成。文章介绍了一款基于两片图像传感器和FPGA组成的微型3D内...

关键字: 微创 3D内窥镜 OV6946 FPGA

运用单片机和FPGA芯片作为主控制器件 , 单片机接收从PC机上传过来的显示内容和显示控制命令 , 通过命令解释和数据转换 , 生成LED显示屏所需要的数据信号和同步的控制信号— 数据、时钟、行同步和面同步 。FPGA芯...

关键字: 单片机 FPGA LED显示屏

在异构计算系统中,ARM与FPGA的协同工作已成为高性能计算的关键架构。本文基于FSPI(Fast Serial Peripheral Interface)四线模式,在150MHz时钟频率下实现10.5MB/s的可靠数据...

关键字: ARM FPGA FSPI

在全球FPGA市场被Xilinx(AMD)与Intel垄断的格局下,国产FPGA厂商高云半导体通过构建自主IP核生态与智能时序约束引擎,走出差异化高端化路径。本文深入解析高云半导体FPGA工具链的两大核心技术——全栈IP...

关键字: FPGA 高云半导体

2025年6月12日,由安路科技主办的2025 FPGA技术沙龙在南京正式召开,深圳市米尔电子有限公司(简称:米尔电子)作为国产FPGA的代表企业出席此次活动。米尔电子发表演讲,并展出米尔基于安路飞龙派的核心板和解决方案...

关键字: FPGA 核心板 开发板

高 I/O、低功耗及先进的安全功能,适用于成本敏感型边缘应用

关键字: FPGA I/O 机器视觉

本文讨论如何为特定应用选择合适的温度传感器。我们将介绍不同类型的温度传感器及其优缺点。最后,我们将探讨远程和本地检测技术的最新进展如何推动科技进步,从而创造出更多更先进的温度传感器。

关键字: 温度传感器 CPU FPGA
关闭