当前位置:首页 > 工业控制 > 电子设计自动化
[导读]摘要:在学习数字信号处理算法程序中用VC编写的几个通用算法程序。 在学习信号处理的过程中,看到书上的大部分算法都是用Fortan或者Basic实现,于是自己试验着用VC实现了一下。 1、卷积计算 离散卷积公式的算法实现 图

摘要:在学习数字信号处理算法程序中用VC编写的几个通用算法程序。

在学习信号处理的过程中,看到书上的大部分算法都是用Fortan或者Basic实现,于是自己试验着用VC实现了一下。

1、卷积计算

离散卷积公式的算法实现

卷积计算界面


图1 卷积计算界面

1.1 主程序代码(省略了部分不关键代码)

void CInterVolveDlg::CalTheNumByArray() { this->UpdateData(TRUE);
FFuncs funcs[2] = {funch1,funch2};
int n = this->m_ValueN; double* x = new double[2*(n+1)];
//x(n) double* y = new double[2*(n+1)];
//y(n) double* h = new double[2*(n+1)];
//h(n)
//1.init x(n),h(n),y(n) CButton* pbtn = (CButton*) this->GetDlgItem(IDC_RADIO1);
int nChoseItem = 0;
//函数选择 if(pbtn->GetCheck()) { nChoseItem = 0; } e
lse { nChoseItem = 1; } for(int i= 0;i<2*(n+1);i++) { if(i< n+1) { x[i] = 1; h[i] = funcs[nChoseItem](i); }
else { x[i] = 0; h[i] = 0; } }
//2.y(i)=SUM(x(m)*h(i-m)) m=0..i for(i=0;i<2*(n+1);i++) { y[i] = Calcy(x,h,i); }
//显示结果 delete[] x; delete[] y; delete[] h;}

1.2 各个子函数实现

typedef double (* FFuncs)(int);
//h1(x) doublefunch1(intn) { doublefbase = (double)4/(double)5; double fr = std::pow(fbase, n); return fr; }
//h2(x)doublefunch2(intn) { doublefpi = 3.1415927; return 0.5*sin((double)0.5*n); }
//y(n)//y(n)=sum(x(m)*y(n-m))m=0..n doubleCalcy(double x[],double h[],int n) {double yvalue = 0;
for(int m= 0;m<=n;m++) { yvalue += x[m]*h[n-m]; }
return yvalue;}

2、DFT与FFT实现

程序界面,具体实现见注释及代码:

DFT与FFT实现界面


图2 DFT与FFT实现界面

2.1 主程序代码

void CFFTConversionDlg::OnBnClickedBtncal() { this->UpdateData(TRUE);
int nN = this->m_NumN;
float fF = this->m_NumF;
float fT = this->m_NumT;
bool bIsTimesof2 = false;
for(int i= 0;i<100;i++) { if(nN==(2 < < i)) { bIsTimesof2 = true; break; } }
if(!bIsTimesof2) { AfxMessageBox("N请输入一个以2为底的幂级数!");
this->GetDlgItem(IDC_EDTN)->SetFocus();
return; } COMP* x = new COMP[nN];
//x(n) COMP* X = new COMP[nN];//X(k) initX(nN,x,fF,fT);
CButton* pRadio = (CButton*)this->GetDlgItem(IDC_RADIODFT);
if(pRadio->GetCheck()) { DFT(nN,x,X); }
else { FFT(nN,x,X); }
char buffer[256];
COMP source = X[nN-1];
sprintf(buffer,"%f+%fi",source.real(),source.imag());
CWnd* pwnd = this->GetDlgItem(IDC_EDTRET);
pwnd->SetWindowText(buffer);
CListCtrl* pList=(CListCtrl*) this->GetDlgItem(IDC_LIST1);
CListOper oper;
oper.FillList(*pList,nN,x,X);
delete[] x;
delete[] X;}

2.2 子函数代码

说明:其中COMP为复数类型

/*******************************************
Name :DFT* Function
:Disperse Fuliye Transformation* Params
:N -- Total count of sampling points* X -- Input sequence* Return
:XN(k)=sum[x(n)*Pow(e,j2*Pi/N)]
* k,n
:0..N-1
*******************************************
/void DFT(int N,COMP x[],COMP XK[]){ double C = (2*pi)/N;
COMP t(0,0),ret(0,0);
for(int k=0;k < N;k++)
{ ret = COMP(0,0);
for(int i=0;i< N;i++) { t = COMP(cos(C*k*i),-sin(C*k*i));
ret += x[i]*t; } XK[k] = ret; } }/
*******************************************
Name
:FFT* Function
:Fast Fuliye Transformation* Params
:N -- Total count of sampling points* X -- Input sequence* Return
:XN(k)=sum[x(n)*Pow(e,j2*Pi/N)] * k,n
:0..N-1
*******************************************
/void FFT(int N,COMP X[],COMP XK[]){ int j=0; COMP U=0,W=0;
COMP* A = XK;
//Adjust sequence for(int i=0;i< N;i++) { if(i==0) { A[0] = X[0]; }
else { j=GetInverse(N,j);
A[i] = X[j]; } }
//确定级别数
for(int M=0;M< N;M++) { if((1<< M)==N) break; }
for(int L=1;L<=M;L++)//1-M级依次确定 { int LE = (int)pow(2,L);
//间隔 int LE1 = LE/2;
//W级数,如W0,W1,W2... W=COMP(cos(pi/LE1),-sin(pi/LE1));
U=COMP(1,0); for(j=0;j< LE1;j++)
// { i=j; while(i< N) { int IP = i+LE1; COMP T=A[IP]*U;
A[IP]=A[i]-T;//蝶形计算 A[i]=A[i]+T; i+=LE; } U=U*W;
//不同的W次幂 } }}void initX(int N,COMP x[],float F,float T){
for(int i=0;i< N;i++) { x[i] = COMP(cos(2*pi*F*T*i),0);
}}

3.2 子函数代码实现

/*********************************************************************
Name :
FuncHd* Function:
Hd()--Required frequency response function
***********************************************************************
/COMP FuncHd(double LowLimit,double UpperLimit,COMP x){
if(x.real()>UpperLimit||x.real() < LowLimit) return 0;
else return 1;
}void FIR(double LowLimit,double UpperLimit,int N,COMP Hn[])
{ int M = 2*N;
for(int i=0;i < N;i++) { Hn[i] = COMP(0,0);
for(int k=0;k < M;k++) { COMP C = COMP(cos(2*pi*i*k/(double)M),sin(2*pi*i*k/(double)M));
Hn[i] += C*FuncHd(LowLimit,UpperLimit,COMP(cos(2*pi*k/(double)M),sin(2*pi*k/(double)M)));
} Hn[i] = Hn[i]*COMP(1/(double)M,0);
}}

4、结束语

虽然现在DSP算法都有很好C语言实现。但是能够通过自己动手编写代码加深对基础知识的掌握,对自己进行数据采集器件的控制还是有很多益处的。



来源:ks990次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭