当前位置:首页 > 工业控制 > 电子设计自动化
[导读]通常,物料从贴片机上拆下以后,在再次使用以前,会一直存放在干燥的环境里,比如干燥箱,或者和干燥剂一起重新封装。很多组装人员认为,在器件保存在干燥环境以后,可以停止统计器件的曝露时间。其实,只有在器件以

通常,物料从贴片机上拆下以后,在再次使用以前,会一直存放在干燥的环境里,比如干燥箱,或者和干燥剂一起重新封装。很多组装人员认为,在器件保存在干燥环境以后,可以停止统计器件的曝露时间。其实,只有在器件以前就是干燥的情况下,才可以这样做。事实上,一旦器件曝露相当长一段时间后(一小时以上),所吸收的湿气会停留在器件的封装里面,并慢慢渗透到器件的内部,从而很可能对器件造成破坏。

最近的调查结果清晰的表明,器件在干燥环境下的时间与在环境中的曝露时间同样重要。最近,朗讯科技的Shook和Goodelle发表了与此相关的论文,论道精辟。有例子表明,湿度等级为5(正常的拆封寿命为48小时)的PLCC器件,干燥保存70小时以后,实际上,仅仅曝露16个小时,便超过了其致命湿度水平。

研究表明,SMD器件从MBB内取出以后,其Floor Life与外部环境状况呈一定的函数关系。保守的讲,较安全的作法就是严格按照表1对器件进行控制。但是外部环境经常会发生变化,实际的环境状况满足不了表1中规定的要求。表2列出了随着外部或者储存环境的变化,器件Floor Life的相应变化。

如果MSD器件以前没有受潮,而且拆封后曝露的时间很短(30分钟以内),曝露环境湿度也没有超过30℃/60%,那么用干燥箱或防潮袋对器件继续存储即可。如果采用干燥袋存储,只要曝露时间不超过30分钟,原来的干燥剂还可以继续使用。

对于Levels 2~4的MSD,只要曝露时间不超过12小时,则其重新干燥处理的保持时间为5倍的曝露时间。干燥介质可以是足够多的干燥剂,也可以采用干燥柜对器件进行干燥,干燥柜的内部湿度要保持在10%RH以内。

另外,对于Levels 2、2a或者3,如果曝露时间不超过规定的Floor Life,器件放在≤10%RH的干燥箱内的那段时间,或者放在干燥袋的那段时间,不应再计算在曝露时间内。

对于Levels 5~5a的MSD,只要曝露时间不超过8小时,则其重新干燥处理的保持时间为10倍的曝露时间。可以用足够多的干燥剂来对器件进行干燥,也可以采用干燥柜对器件进行干燥,干燥柜的内部湿度要保持在5%RH以内。干燥处理以后可以从零开始计算器件的曝露时间。

如果干燥柜的湿度保持在5%RH以下,这样相当于存储在完整无损的MBB内,其Shelf Life不受限制。

MSD包装许多公司会选择对没有用完的MSD重新打包,根据标准要求,打包的基本物资条件有MBB、干燥剂、HIC等,不同等级的MSD其打包的要求是不一样的。如表3所示。

在用MBB密封以前,Level 2a~5a的器件必须进行干燥(除湿)处理。干燥处理的方法一般是采用烘干机进行烘烤。

由于盛放器件的料盘,如:Tray盘、Tube、Reel卷带等,和器件一块儿放入MBB时,会影响湿度等级,因此作为补偿,这些料盘也要进行干燥处理。

MSD的干燥方法一般采用的干燥方法是在一定的温度下对器件进行一定时间的恒温烘干处理。也可以利用足够多的干燥剂来对器件进行干燥除湿。

根据器件的湿度敏感等级、大小和周围环境湿度状况,不同的MSD的烘干过程也各不相同。按照要求对器件干燥处理以后,MSD的Shelf Life和Floor Life可以从零开始计算。

当MSD曝露时间超过Floor Life,或者其他情况导致MSD周围的温度/湿度超出要求以后,其烘干方法具体可参照最新的IPC/JEDEC标准。如果器件要密封到MBB里面,必须在密封前进行烘干。Level 6 的MSD在使用前必须重新烘干,然后根据湿度敏感警示标志上的说明在规定的时间内进行回流焊接。

对MSD进行烘烤时要注意以下几个问题:一般装在高温料盘(如高温Tray盘)里面的器件都可以在125℃温度下进行烘烤,除非厂商特殊注明了温度。Tray盘上面一般注有最高烘烤温度。

装在低温料盘(如低温Tray盘、管筒、卷带)内的器件其烘烤温度不能高于40℃,否则料盘会受到高温损坏。

在125℃高温烘烤以前要把纸/塑料袋/盒拿掉。

烘烤时注意ESD(静电敏感)保护,尤其烘烤以后,环境特别干燥,最容易产生静电。

烘烤时务必控制好温度和时间。如果温度过高,或时间过长,很容易使器件氧化,或着在器件内部接连处产生金属间化合物,从而影响器件的焊接性。

烘烤期间,注意不能导致料盘释放出不明气体,否则会影响器件的焊接性。

烘烤期间一定要作好烘烤记录,以便控制好烘烤时间。

MSD的返修如果要拆掉主板上的器件,最好采用局部加热,器件的表面温度控制在200℃以内,以减小湿度造成的损坏。如果有些器件的温度要超过200℃,而且超过了规定的Floor Life,在返工前要对主板进行烘烤,烘烤方法见下段介绍;在Floor Life以内,器件所能经受的温度和回流焊接所能承受的温度一样。

如果拆除器件是为了进行缺陷分析,一定要遵循上面的建议,否则湿度造成的损坏会掩盖本来的缺陷原因。

如果器件拆除以后要回收再用,更要遵循上面的建议。MSD经过若干次回流焊接或返工后,并不能代替烘干处理。

有些SMD器件和主板不能承受长时间的高温烘烤,如一些FR-4材料,不能承受24小时125℃的烘烤;一些电池和电解电容也对温度很敏感。综合考虑这些因素,选择合适的烘烤方法。



来源:0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2025 IPC CEMAC电子制造年会将于9月25日至26日在上海浦东新区举办。年会以“Shaping a Sustainable Future(共塑可持续未来)”为主题,汇聚国内外专家学者、产业领袖与制造精英,围绕先...

关键字: PCB AI 数字化

在PCB制造过程中,孔无铜现象作为致命性缺陷之一,直接导致电气连接失效和产品报废。该问题涉及钻孔、化学处理、电镀等全流程,其成因复杂且相互交织。本文将从工艺机理、材料特性及设备控制三个维度,系统解析孔无铜的根源并提出解决...

关键字: PCB 孔无铜

在电子制造领域,PCB孔铜断裂是导致电路失效的典型问题,其隐蔽性与破坏性常引发批量性质量事故。本文结合实际案例与失效分析数据,系统梳理孔铜断裂的五大核心原因,为行业提供可落地的解决方案。

关键字: PCB 孔铜断裂

在电子制造领域,喷锡板(HASL,Hot Air Solder Levelling)因成本低廉、工艺成熟,仍占据中低端PCB市场30%以上的份额。然而,随着无铅化趋势推进,HASL工艺的拒焊(Non-Wetting)与退...

关键字: PCB 喷锡板 HASL

在PCB制造过程中,阻焊油墨作为关键功能层,其质量直接影响产品可靠性。然而,油墨气泡、脱落、显影不净等异常问题长期困扰行业,尤其在5G通信、汽车电子等高可靠性领域,阻焊缺陷导致的失效占比高达15%-20%。本文结合典型失...

关键字: PCB 阻焊油墨

在5G通信、新能源汽车、工业控制等高功率密度应用场景中,传统有机基板已难以满足散热与可靠性需求。陶瓷基板凭借其高热导率、低热膨胀系数及优异化学稳定性,成为功率器件封装的核心材料。本文从PCB设计规范与陶瓷基板导入标准两大...

关键字: PCB 陶瓷基板

在电子制造领域,PCB(印刷电路板)作为核心组件,其质量直接影响整机性能与可靠性。然而,受材料、工艺、环境等多重因素影响,PCB生产过程中常出现短路、开路、焊接不良等缺陷。本文基于行业实践与失效分析案例,系统梳理PCB常...

关键字: PCB 印刷电路板

在PCB(印制电路板)制造过程中,感光阻焊油墨作为保护电路、防止焊接短路的关键材料,其性能稳定性直接影响产品良率与可靠性。然而,受工艺参数、材料特性及环境因素影响,油墨异常现象频发。本文聚焦显影不净、黄变、附着力不足等典...

关键字: PCB 感光阻焊油墨 印制电路板

在电子制造领域,印刷电路板(PCB)的表面处理工艺直接影响其可靠性、信号完整性和使用寿命。其中,化学镀镍浸金(ENIG,俗称“镀金”)与有机保焊剂(OSP)是两种主流工艺,但它们在失效模式、应用场景及成本效益上存在显著差...

关键字: PCB OSP工艺

在PCB设计的宏伟蓝图中,布局与布线规则犹如精密乐章中的指挥棒,是铸就电路板卓越性能、坚不可摧的可靠性及经济高效的制造成本的灵魂所在。恰如一位巧手的园艺师,合理的布局艺术性地编排着每一寸空间,既削减了布线交织的繁复迷宫,...

关键字: PCB 电路板
关闭