当前位置:首页 > 工业控制 > 电子设计自动化
[导读]通过 PCB的分层设计、恰当的布局布线和安装,可以实现 PCB的抗ESD设计,要达到期望的抗ESD能力,通常要通过几个测试-解决问题-重新测试这样的周期,每一个周期都可能至少影响到一块 PCB的设计。在 PCB设计过程中,通

通过 PCB的分层设计、恰当的布局布线和安装,可以实现 PCB的抗ESD设计,要达到期望的抗ESD能力,通常要通过几个测试-解决问题-重新测试这样的周期,每一个周期都可能至少影响到一块 PCB的设计。在 PCB设计过程中,通过预测可以将绝大多数设计修改仅限于增减元器件。要调整 PCB布局布线,使之具有最强的 ESD防范性能。E1.尽可能使用多层PCB。相对于双面 PCB而言,地平面和电源平面以及排列紧密的信号线-地线间距能够减小共模阻抗(common impedance)和感性耦合,使之达到双面 PCB的 1/10到 1/100。尽量地将每一个信号层都紧邻一个电源层或地线层。对于顶层和底层表面都有元器件,具有很短连接线以及许多填充地的高密度 PCB,可以考虑使用内层线。大多数的信号线以及电源和地平面都在内层上,因而类似于具备屏蔽功能的法拉第盒。E2.对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧邻地线,在垂直和水平线或填充区之间,要尽可能多地连接。一面的栅格尺寸小于等于60mm。如果可能,栅格尺寸应小于13mm(0.5英寸) E3.确保每一个电路尽可能紧凑。E4.尽可能将所有连接器都放在一边。E5.如果可能,将电源线从卡的中央引入,并远离容易直接遭受 ESD影响的区域。E6.在引向机箱外的连接器(容易直接被ESD击中)下方的所有PCB层上,要放置宽的机箱地或者多边形填充地,并每隔大约 13mm的距离用过孔将它们连接在一起。E7.在卡的边缘上放置安装孔,安装孔周围用无阻焊剂的顶层和底层焊盘连接到机箱地上。E8. PCB装配时,不要在顶层或者底层的焊盘上涂覆任何焊料。使用具有内嵌垫圈的螺钉来实现 PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。E9.在每一层的机箱地和电路地之间要设置相同的隔离区,如果可能,保持间隔距离为 0.64mm(0.025英寸) E10.在卡的顶层和底层邻近安装孔的位置,每隔100mm(4.0英寸)沿机箱地线将机箱地和电路地用1.27mm宽(0.050英寸)的线连接在一起。与这些连接点的相邻处,在机箱地和电路地之间放置用于安装的焊盘或安装孔,这些地线连接可以用刀片划开以保持开路,或用磁珠/高频电容的跳接,以改变 ESD测试时的接地机制。 E11.如果不会放入金属机箱或者屏蔽装置中,在的顶层和底层机箱地线上不能涂阻焊剂。这样它们可以作为 ESD电弧的放电路径。E12.要以下列方式在电路周围设置一个环形地。除边缘连接器以及机箱地以外,在整个外围四周放上环形地通路。确保所有层的环形地宽度大于 2.5mm (0.1英寸)。每隔 13mm(0.5英寸)用过孔将环形地连接起来。将环形地与多层电路的公共地连接到一起。对安装在金属机箱或者屏蔽装置里的双面板来说,应该将环形地与电路公共地连接起来。不屏蔽的双面电路则应该将环形地连接到机箱地,环形地上不能涂阻焊剂,以便该环形地可以充当 ESD的放电路径,在环形地(所有层)上的某个位置处至少放置一个 0.5mm宽(0.020英寸)的间隙 这样可以避免形成一个大的环路。信号布线离环形地的距离不能小于 0.5mm。E13.在能被 ESD直接击中的区域,每一个信号线附近都要布一条地线。E14.I/O电路要尽可能邻近对应的连接器。E15.对易受 ESD影响的电路,应该放在邻近电路中心的区域,这样其它的电路可以为它们提供一定的屏蔽作用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2025 IPC CEMAC电子制造年会将于9月25日至26日在上海举办。年会以“Shaping a Sustainable Future(共塑可持续未来)”为主题,汇聚国内外专家学者、产业领袖与制造精英,围绕先进封装、...

关键字: PCB 电子制造 AI

2025 IPC CEMAC电子制造年会将于9月25日至26日在上海浦东新区举办。年会以“Shaping a Sustainable Future(共塑可持续未来)”为主题,汇聚国内外专家学者、产业领袖与制造精英,围绕先...

关键字: PCB AI 数字化

在PCB制造过程中,孔无铜现象作为致命性缺陷之一,直接导致电气连接失效和产品报废。该问题涉及钻孔、化学处理、电镀等全流程,其成因复杂且相互交织。本文将从工艺机理、材料特性及设备控制三个维度,系统解析孔无铜的根源并提出解决...

关键字: PCB 孔无铜

在电子制造领域,PCB孔铜断裂是导致电路失效的典型问题,其隐蔽性与破坏性常引发批量性质量事故。本文结合实际案例与失效分析数据,系统梳理孔铜断裂的五大核心原因,为行业提供可落地的解决方案。

关键字: PCB 孔铜断裂

在电子制造领域,喷锡板(HASL,Hot Air Solder Levelling)因成本低廉、工艺成熟,仍占据中低端PCB市场30%以上的份额。然而,随着无铅化趋势推进,HASL工艺的拒焊(Non-Wetting)与退...

关键字: PCB 喷锡板 HASL

在PCB制造过程中,阻焊油墨作为关键功能层,其质量直接影响产品可靠性。然而,油墨气泡、脱落、显影不净等异常问题长期困扰行业,尤其在5G通信、汽车电子等高可靠性领域,阻焊缺陷导致的失效占比高达15%-20%。本文结合典型失...

关键字: PCB 阻焊油墨

在5G通信、新能源汽车、工业控制等高功率密度应用场景中,传统有机基板已难以满足散热与可靠性需求。陶瓷基板凭借其高热导率、低热膨胀系数及优异化学稳定性,成为功率器件封装的核心材料。本文从PCB设计规范与陶瓷基板导入标准两大...

关键字: PCB 陶瓷基板

在电子制造领域,PCB(印刷电路板)作为核心组件,其质量直接影响整机性能与可靠性。然而,受材料、工艺、环境等多重因素影响,PCB生产过程中常出现短路、开路、焊接不良等缺陷。本文基于行业实践与失效分析案例,系统梳理PCB常...

关键字: PCB 印刷电路板

在PCB(印制电路板)制造过程中,感光阻焊油墨作为保护电路、防止焊接短路的关键材料,其性能稳定性直接影响产品良率与可靠性。然而,受工艺参数、材料特性及环境因素影响,油墨异常现象频发。本文聚焦显影不净、黄变、附着力不足等典...

关键字: PCB 感光阻焊油墨 印制电路板

在电子制造领域,印刷电路板(PCB)的表面处理工艺直接影响其可靠性、信号完整性和使用寿命。其中,化学镀镍浸金(ENIG,俗称“镀金”)与有机保焊剂(OSP)是两种主流工艺,但它们在失效模式、应用场景及成本效益上存在显著差...

关键字: PCB OSP工艺
关闭