当前位置:首页 > 单片机 > 单片机
[导读]本文详细讲述了STM32 IAP 在线升级详解

 一、在进入主题之前我们先了解一些必要的基础知识----stm32系列芯片的种类和型号:

startup_stm32f10x_cl.s 互联型的器件,STM32F105xx,STM32F107xx

startup_stm32f10x_hd.s 大容量的STM32F101xx,STM32F102xx,STM32F103xx

startup_stm32f10x_hd_vl.s 大容量的STM32F100xx

startup_stm32f10x_ld.s 小容量的STM32F101xx,STM32F102xx,STM32F103xx

startup_stm32f10x_ld_vl.s 小容量的STM32F100xx

startup_stm32f10x_md.s 中容量的STM32F101xx,STM32F102xx,STM32F103xx

startup_stm32f10x_md_vl.s 中容量的STM32F100xx (我项目中用的是此款芯片 stm32f100CB)

startup_stm32f10x_xl.s FLASH在512K到1024K字节的STM32F101xx,STM32F102xx,STM32F103xx(例如:像stm32f103re 这个型号的 芯片flash是512k 的, 启动文件用startup_stm32f10x_xl.s 或者startup_stm32f10x_hd.s 都可以;)

cl:互联型产品,stm32f105/107系列

vl:超值型产品,stm32f100系列

xl:超高密度产品,stm32f101/103系列

ld:低密度产品,FLASH小于64K

md:中等密度产品,FLASH=64 or 128

hd:高密度产品,FLASH大于128

二、在拿到ST公司官方的IAP 程序后 我们要思考几点:

1.ST 官方IAP是什么针对什么芯片型号的,我们要用的又是什么芯片型号;

2.我们要用官方IAP适合我们芯片的程序升级使用,要在原有的基础上做那些改变;

(我的资源里有官方IAP源码:http://download.csdn.NET/detail/yx_l128125/6445811)

初略看了一下IAP源码后,现在我们可以回答一下上面的2个问题了:

1.官网刚下载的IAP针对的是stm32f103c8芯片的,所以他的启动代码文件选择的是 startup_stm32f10x_md.s,而我的芯片是stm32f100cb,所以我的启动代码文件选择的是 startup_stm32f10x_md_lv.s

 


 

 


 

2 .第二个问题就是今天我们要做详细分析才能回答的问题了;

(1).知道了IAP官方源码的芯片和我们要用芯片的差异,首先我们要在源码的基础上做芯片级的改动;

A.首先改变编译器keil的芯片型号上我们要改成我们的芯片类型---STM32F100CB;

B.在keil的options for targer 选项C/C++/PREPROMCESSOR symbols的Define栏里定义,把有关STM32F10X_MD的宏定义改成:STM32F10X_MD_VL

也可以在STM32F10X.H里用宏定义

/* Uncomment the line below according to the target STM32 device used in your

application

*/

#if !defined (STM32F10X_LD) && !defined (STM32F10X_LD_VL) && !defined (STM32F10X_MD) && !defined (STM32F10X_MD_VL) && !defined (STM32F10X_HD) && !defined (STM32F10X_HD_VL) && !defined (STM32F10X_XL) && !defined (STM32F10X_CL)

/* #define STM32F10X_LD */ /*!< STM32F10X_LD: STM32 Low density devices */

/* #define STM32F10X_LD_VL */ /*!< STM32F10X_LD_VL: STM32 Low density Value Line devices */

/* #define STM32F10X_MD */ /*!< STM32F10X_MD: STM32 Medium density devices */

#define STM32F10X_MD_VL /*!< STM32F10X_MD_VL: STM32 Medium density Value Line devices */

/* #define STM32F10X_HD */ /*!< STM32F10X_HD: STM32 High density devices */

/* #define STM32F10X_HD_VL */ /*!< STM32F10X_HD_VL: STM32 High density value line devices */

/* #define STM32F10X_XL */ /*!< STM32F10X_XL: STM32 XL-density devices */

/* #define STM32F10X_CL */ /*!< STM32F10X_CL: STM32 Connectivity line devices */

#endif

上面代码说的是如果没有定义 STM32F10X_MD_VL, 则宏定义 STM32F10X_MD_VL

C.外部时钟问价在stm32f10x.h 依据实际修改,原文是 说如果没有宏定义外部时钟HES_VALUE的值,但是宏定义了stm32f10x_cl 则外部时钟设置为25MHZ, 否则外部时钟都设置为8MHZ; 我用的外部晶振是8MHZ的所以不必修改这部分代码;

#if !defined HSE_VALUE

#ifdef STM32F10X_CL

#define HSE_VALUE ((uint32_t)25000000) // Value of the External oscillator in Hz

 #else 

#define HSE_VALUE ((uint32_t)8000000) //Value of the External oscillator in Hz #endif /* STM32F10X_CL */#endif /* HSE_VALUE */

 

D.做系统主频时钟的更改

system_stm32f10x.c的系统主频率,依实际情况修改 ;我用的芯片主频时钟是24MHZ;

#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)

/* #define SYSCLK_FREQ_HSE HSE_VALUE */

#define SYSCLK_FREQ_24MHz 24000000

#else

/* #define SYSCLK_FREQ_HSE HSE_VALUE */

#define SYSCLK_FREQ_24MHz 24000000

/* #define SYSCLK_FREQ_36MHz 36000000 */

/* #define SYSCLK_FREQ_48MHz 48000000 */

/* #define SYSCLK_FREQ_56MHz 56000000 */

/*#define SYSCLK_FREQ_72MHz 72000000*/

#endif

E.下面是关键部分操作了,在说这部分操作前我们先来说一下内存映射: 下图在stm32f100芯片手册的29页,我们只截取关键部分

 


 

从上图我们看出几个关键部分:

1.内部flash 是从0x0800 0000开始 到0x0801 FFFF 结束, 0x0801FFFF-0x0800 0000= 0x20000 =128k 128也就是flash的大小;

2.SRAM的开始地址是 0x2000 0000 ;

我们要把我们的在线升级程序IAP放到FLASH里以0x0800 0000 开始的位置, 应用程序放APP放到以0x08003000开始的位置,中断向量表也放在0x0800 3000开始的位置;如图

 


 

所以我们需要先查看一下misc.h文件中的中断向量表的初始位置宏定义为 NVIC_VectTab_Flash 0x0800 0000

那么要就要设置编译器keil 中的 options for target 的target选项中的 IROM1地址 为0x0800 0000 大小为 0x20000即128K; IRAM1地址为0x2000 0000 大小为0x2000;

(提示:这一项IROM1 地址 即为当前程序下载到flash的地址的起始位置)

下面我们来分析一下修改后的IAP代码:

/*******************************************************************************

* @函数名称 main

* @函数说明 主函数

* @输入参数 无

* @输出参数 无

* @返回参数 无

*******************************************************************************/

int main(void)

{

//Flash 解锁

FLASH_Unlock();

//配置PA15管脚

KEY_Configuration() ;

//配置串口1

IAP_Init();

//PA15是否为低电平

if (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_15) == 0x00)

{

//执行IAP驱动程序更新Flash程序

SerialPutString("\r\n======================================================================");

SerialPutString("\r\n= (C) COPYRIGHT 2011 Lierda =");

SerialPutString("\r\n= =");

SerialPutString("\r\n= In-Application Programming Application (Version 1.0.0) =");

SerialPutString("\r\n= =");

SerialPutString("\r\n= By wuguoyan =");

SerialPutString("\r\n======================================================================");

SerialPutString("\r\n\r\n");

Main_Menu ();

}

//否则执行用户程序

else

{

//判断用处是否已经下载了用户程序,因为正常情况下此地址是栈地址

//若没有这一句话,即使没有下载程序也会进入而导致跑飞。

if (((*(__IO uint32_t*)ApplicationAddress) & 0x2FFE0000 ) == 0x20000000)

{

SerialPutString("Execute user Program\r\n\n");

//跳转至用户代码

JumpAddress = *(__IO uint32_t*) (ApplicationAddress + 4);

Jump_To_Application = (pFunction) JumpAddress;

//初始化用户程序的堆栈指针

__set_MSP(*(__IO uint32_t*) ApplicationAddress);

Jump_To_Application();

}

else

{

SerialPutString("no user Program\r\n\n");

}

}

这里重点说一下几句经典且非常重要的代码:

第一句: if (((*(__IO uint32_t*)ApplicationAddress) & 0x2FFE0000 ) == 0x20000000) //判断栈定地址值是否在0x2000 0000 - 0x 2000 2000之间

怎么理解呢? (1),在程序里#define ApplicationAddress 0x8003000 ,*(__IO uint32_t*)ApplicationAddress) 即取0x8003000开始到0x8003003 的4个字节的值, 因为我们的应用程序APP中设置把 中断向量表 放置在0x08003000 开始的位置;而中断向量表里第一个放的就是栈顶地址的值

也就是说,这句话即通过判断栈顶地址值是否正确(是否在0x2000 0000 - 0x 2000 2000之间) 来判断是否应用程序已经下载了,因为应用程序的启动文件刚开始就去初始化化栈空间,如果栈顶值对了,说应用程已经下载了启动文件的初始化也执行了;

 


 

第二句: JumpAddress = *(__IO uint32_t*) (ApplicationAddress + 4); [ common.c文件第18行定义了: pFunction Jump_To_Application;]

ApplicationAddress + 4 即为0x0800 3004 ,里面放的是中断向量表的第二项“复位地址” JumpAddress = *(__IO uint32_t*) (ApplicationAddress + 4); 之后此时JumpAddress

第三句: Jump_To_Application = (pFunction) JumpAddress;

startup_stm32f10x_md_lv. 文件中别名 typedef void (*pFunction)(void); 这个看上去有点奇怪;正常第一个整型变量 typedef int a; 就是给整型定义一个别名 a void (*pFunction)(void); 是声明一个函数指针,加上一个typedef 之后 pFunction只不过是类型 void (*)(void) 的一个别名;例如:

pFunction a1,a2,a3;

void fun(void)

{

......

}

a1 = fun;

所以,Jump_To_Application = (pFunction) JumpAddress; 此时Jump_To_Application指向了复位函数所在的地址;

第四 、五句: __set_MSP(*(__IO uint32_t*) ApplicationAddress); \\设置主函数栈指针

Jump_To_Application(); \\执行复位函数

我们看一下启动文件startup_stm32f10x_md_vl。s 中的启动代码,更容易理解

 


 

移植后的IAP代码在我的资源(如果是stm32f100cb的芯片可以直接用):http://download.csdn.Net/detail/yx_l128125/6475219

三、我们来简单看下启动文件中的启动代码,分析一下这更有利于我们对IAP的理解:

解析 STM32 的启动过程

当前的嵌入式应用程序开发过程里,并且C语言成为了绝大部分场合的最佳选择。如此一来main函数似乎成为了理所当然的起点——因为C程序往往从main函数开始执行。但一个经常会被忽略的问题是:微控制器(单片机)上电后,是如何寻找到并执行main函数的呢?很显然微控制器无法从硬件上定位main函数的入口地址,因为使用C语言作为开发语言后,变量/函数的地址便由编译器在编译时自行分配,这样一来main函数的入口地址在微控制器的内部存储空间中不再是绝对不变的。相信读者都可以回答这个问题,答案也许大同小异,但肯定都有个关键词,叫“启动文件”,用英文单词来描述是“Bootloader”。

无论性能高下,结构简繁,价格贵贱,每一种微控制器(处理器)都必须有启动文件,启动文件的作用便是负责执行微控制器从“复位”到“开始执行main函数”中间这段时间(称为启动过程)所必须进行的工作。最为常见的51,AVR或MSP430等微控制器当然也有对应启动文件,但开发环境往往自动完整地提供了这个启动文件,不需要开发人员再行干预启动过程,只需要从main函数开始进行应用程序的设计即可。

话题转到STM32微控制器,无论是keil uvision4还是IAR EWARM开发环境,ST公司都提供了现成的直接可用的启动文件,程序开发人员可以直接引用启动文件后直接进行C应用程序的开发。这样能大大减小开发人员从其它微控制器平台跳转至STM32平台,也降低了适应STM32微控制器的难度(对于上一代ARM的当家花旦ARM9,启动文件往往是第一道难啃却又无法逾越的坎)。

相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:

1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;

2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;

3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;

而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。

有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。

程序清单一:

 


 

 


 

 


 

 


 

 


 

如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:

 第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:

#define DATA_IN_ExtSRAM 0

 第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:

#define Stack_Size 0x00000400

 第3行:伪指令AREA,表示

 第4行:开辟一段大小为Stack_Size的内存空间作为栈。

 第5行:标号__initial_sp,表示栈空间顶地址。

 第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。

 第7行:伪指令AREA,表示

 第8行:标号__heap_base,表示堆空间起始地址。

 第9行:开辟一段大小为Heap_Size的内存空间作为堆。

 第10行:标号__heap_limit,表示堆空间结束地址。

 第11行:告诉编译器使用THUMB指令集。

 第12行:告诉编译器以8字节对齐。

 第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。

 第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)

 第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。

 第84行:标号__Vectors,表示中断向量表入口地址。

 第85—160行:建立中断向量表。

 第161行:

 第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。

 第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。

 第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。

 第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。

 第202行:声明__main标号。

 第203—204行:跳转__main地址执行。

 第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。

 第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。

 第212行:定义全局标号__use_two_region_memory。

 第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。

 第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。

 第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。

 第224行:程序完毕。

以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:

1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中“READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而“READONLY”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。

2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。

3、 标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。

4、 第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转__user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开发源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。

至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转¬¬C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器

随着科技的飞速发展,单片机和嵌入式系统在现代电子设备中的应用越来越广泛。它们不仅提高了设备的智能化水平,还推动了各行各业的创新与发展。在单片机和嵌入式系统的开发中,编程语言的选择至关重要。本文将深入探讨单片机和嵌入式系统...

关键字: 单片机 嵌入式系统 电子设备

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

PLC(可编程逻辑控制器)和单片机是两种不同的控制设备,它们之间存在明显的区别:

关键字: 单片机 plc 控制器

Holtek隆重推出全新一代32-bit Arm® Cortex®-M0+ 5V CAN MCU - HT32F53231/HT32F53241/HT32F53242/HT32F53252。这一系列单片机带有来自Bosc...

关键字: MCU 工业自动化 单片机
关闭
关闭