当前位置:首页 > 单片机 > 单片机
[导读] 0 引言 随着人们对生活和工作环境的安全性的要求不断提高,安全防范的重要性越来越突出。视频监控技术在各个领域发挥着越来越重要的作用,比如对森林、旅游景点、城市小区等通过视频监控来实时监控现

0 引言

随着人们对生活和工作环境的安全性的要求不断提高,安全防范的重要性越来越突出。视频监控技术在各个领域发挥着越来越重要的作用,比如对森林、旅游景点、城市小区等通过视频监控来实时监控现场发生的情况。将嵌入式技术和无线网络技术应用于视频监控终端,与传统的有线视频监控相比,无线视频监控摆脱了网络电缆的束缚,提高了视频监控的灵活性和可扩展性。监控人员可以携带手持监控设备而不必在固定位置值守来监控现场。

在无线网络环境下传输视频,庞大的视频信息量对有限的传输带宽是难以承受的,成为阻碍其应用的瓶颈之一,因此,需要高效率的视频压缩标准来满足无线传输带宽的需求。新一代视频压缩标准H.264是面向Internet和无线网络的视频图像编解码技术,它不仅提高了压缩效率,而且增加了网络适应能力,降低了网络带宽的需求。H.264标准定义了视频编码层VCL(Video Coding Layer)和网络提取层NAL(Network Abstraction Layer)。视频编码层主要采用帧内预测、帧间预测、变换和量化、熵编解码等技术实现视频压缩功能,网络提取层将编码后的数据封装成NALU单元,以适应在无线网络中传输。

移动视频监控终端以ARM微处理器为核心,剪裁适合视频监控终端的嵌入式Linux操作系统。通过配备无线网卡接收监控前端压缩视频数据,解码、显示监控前端发送的视频流,实时显示前端监控画面。本文将重点阐述在视频传输过程中采用RTP/UDP/IP协议时,出现的视频包乱序、丢包处理方法,以及在ARM平台上对H.264解码器的移植和实现。

1 系统的硬件平台

系统硬件平台主要由嵌入式微处理器、NANDFLASH,SDRAM,IEEE802.11协议无线网卡、LCD模块组成。本系统的微处理器选用三星公司ARM9内核的S3C2440,系统时钟采用400 MHz的工作频率。S3C2440内部集成了大量的功能单元,包括:存储器控制器有8个Bank区间、LCD控制器、USB控制器以及丰富的外设接口资源,根据视频监控终端的需求,在此基础上进行外围电路的配置和扩展。视频监控终端硬件框图如图1所示。

存储器包括ROM和RAM两部分,ROM配备了非线性结构的K9F1208UOM容量为64M×8 b的NAND FLASH芯片;RAM配备2片HY57V561620BT—H组成32位数据总线的SDRAM,适用监控终端处理庞大视频数据的需求。在USB Host接口上外接一块基于IEEE802.11协议的无线网卡,通过无线AP端点接收监控前端视频数据。液晶屏选用TFT真彩液晶屏,并配备相应的触摸屏实现人机交互的目的。

2 系统的软件设计

移动视频监控终端软件设计以嵌入式Linux操作系统为核心,作为一种开源操作系统,Linux具有支持多种硬件平台、丰富的设备驱动和良好的网络功能等特点。针对监控终端的具体应用对内核进行配置,剪裁出合适的系统。监控终端应用软件是建立在操作系统之上,为实现RTP/UDP/IP协议下接收H.264视频流和ffmpeg解码库实时解码视频流。

2.1 H.264视频流的传输

2.1.1 传输方式选择

视频的实时传输要求较低的时间延迟,并且允许一定的丢包率。由于TCP协议的3次握手以及丢包重传机制会造成一定的延时,在实时监控系统中有一定缺陷,而UDP协议是面向无链接、不可靠的传输层协议,具有消耗资源小,传输速度快等特点,在视频传输过程中偶尔丢包不会对监控画面产生较大影响。UDP协议不提供数据包分包、封装、数据包排序等缺点,为保障视频流传输的可靠性,网络传输部分采用建立在UDP协议之上的RTP(Real-time Transport Protocol)实时传输协议来实现,通过套接字与前端建立连接,以接收视频流数据。RTP提供带有实时特性的端对端数据传输服务,包括有效载荷类型的定义、序列号、时间戳和传输检测控制。基于RTP/UDP/IP协议传输视频流封装格式如图2所示。

2.1.2 视频流传输

采用UDP协议传输RTP包时会出现乱序的现象,所谓乱序就是监控终端接收到RTP包顺序可能前端发送的顺序不一致,因此,首先要对接收的RTP包排序。采用在内存中建立一个双向链表来保存接收的RTP包,按照RTP报头的序列号(Sequence Number)顺序存放到链表中,双向链表结构体定义如下,部分变量用于RTP分片封包模式。


每当接收到一个新的RTP包后,根据序列号从链表尾开始搜索并插入到合适的位置,比如,接收到一个序列号SN=26的RTP包在链表中分配内存,找到位于25,27之间的位置插入该包,RTP包排序过程如图3所示。

H.264视频流NALU单元封装成RTP包时,要遵循RTP负载格式标准,H.264负载格式定义了3种类型的负载结构:单一NALU模式、组合封包模式、分片封包模式。单一NALU模式是一个RTP包仅由一个完整的NALU组成;组合封包模式是可能由多个NALU组成一个RTP包;分片封包模式是将一个NALU单元封装成多个RTP包,采用分片封包模式的原因是网络传输协议有最大传输单元(MTU)一般为1500B上限,如果NALU大于MTU,IP层将其自动分割为几个小于MTU的数据包,这样无法检测数据包是否有丢失,所以有必要采取分片封包模式,在接收端把拥有相同时间戳的多个RTP包按照序列号重组成一个完整的NALU。分片封包模式的RTP包格式如图4所示。

FU inDICator的Type字段表示RTP采用的负载结构,28,29时表示采用分片封包模式,NRI字段的值根据NALU的NRI值设置。FU header的S位置1时表示该包是NALU的起始分片,E位置1时表示该包是NALU的结束分片。

2.1.3 RTP丢包处理

由于网络稳定性原因,可能造成RTP丢包的情况。针对单一NALU模式和组合封包模式丢包不会影响解码器的正常工作,会导致监控画面花屏或跳帧想象,但对于实时监控是在可承受的范围。对于分片封包模式丢包会造成接收端收到一个不完整的NALU,对一个不完整的NALU解码可能造成解码失败,甚至系统崩溃。因此,对于分片封包模式的RTP包需要判断接收的NALU是否丢包。

传输分片封包模式的NALU时,一个NALU分割封装成若干个RTP包具有相同的时间戳、依次递增的序列号。对接收的RTP包根据FU header头信息做不同的处理:接收到起始分片(S=1),根据序列号在链表中添加节点,保存视频数据、起始分片序列号,计数器加1;接收到中间分片,在链表中找到时间戳相同的节点,将此RTP包序列号与起始序列号相减,计算出视频数据在链表的相对偏移,存储视频数据到链表相应位置,计数器加1;接收到结束分片(E=1),同中间分片一样,但还需要保存结束分片序列号。每接收一个RTP包后判断NALU完整性,在接收到起始分片、结束分片的前提下,结束分片序列号与起始分片序列号之差是否等于计数器的值,以此判断一个NALU是否接收完整,若接收到所有分片,置位结构体中FrameCompelere,解码器可根据此位判断NALU完整性。

2.2 H.264解码器的实现

监控终端通过网络接收到H.264视频流后,需要移植H.264的解码库实现实时解码。在众多解码器中经对比和分析,选用ffmpeg开源解码器来实现。ffmpeg库为音视频数据分离、转换、解码提供了完整解决方案,其中两个重要库libavformat和libavcodec,分别支持各种音视频文件格式和音视频解码器。

利用ffmpeg的API函数进行视频流解码,先做好解码前的准备工作。调用av_register_all()函数注册所有的文件格式和编解码器的库,也可以只注册特定的解码器。关于解码器的信息在AVCodeCContext结构体中,它包含解码器所有信息,查找H.264解码器CODEC_ID_H264,通过avcodec_open()函数打开解码器。用avcodec_alLOC_frame()函数分配一帧的存储空间,存储解码后输出的数据。

在双向链表中已经保存了接收的视频流,从链表头读取NALU进行解码,每读取一个NALU将链表头指向下一个单元,释放已读取NALU占有的内存。NALU的头信息定义了视频流所属类型,一般包括增强信息(SEI)、序列参数集(SPS)、图像参数集(PPS)、条带(SlICe)等。先将SPS、PPS参数集通过解码器解码出来设置解码图像尺寸、片组数、参考帧数、量化和滤波参数等。依次从链表头读取NALU,调用avcodec_decode_ video()函数解码输出到分配的存储空间,当完成一帧的解码,就需要对解码后的图像显示到液晶屏。解码输出的图像格式为YUV420P,可以采用ffmpeg提供的sws_seale()把图像格式转换为RGB格式显示,也可以采用其他SDL之类的库直接YUV覆盖显示。整个解码流程如图5所示。

3 结语

系统采用S3C2440硬件平台和嵌入式Linux操作系统相结合,设计了移动视频监控终端,重点阐述了用RTP协议在网络中通过套接字传输视频流,结合开源解码库ffmpeg实时解码H.264视频流的解决方案。经测试,对于QCIF分辨率监控画面具有较好的实时性和可靠性。当视频分辨率增大时,解码器的解码性能成为

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着科技的不断进步,人脸识别技术已经成为了当今社会最为热门的技术之一,被广泛应用于安防、金融、教育、医疗等领域。

关键字: 人脸识别 视频监控 摄像机

全新的卡片式设计:整个控制中心以卡片形式展现第三方连接状态,对应设备的相关功能以及其它硬件的终端设置,可在控制中心中进行统一管理。

关键字: 硬件 设备 终端

广大终端厂商朋友,有没有想过,您仓库中的呆料,为什么那么“难”处理?

关键字: 终端 库存

随着科技的发展,视频监控系统在各行各业的应用越来越广泛。硬盘录像机作为视频监控系统的核心设备,其重要性不言而喻。本文将详细介绍硬盘录像机的应用场景、工作原理以及如何实现设计。

关键字: 硬盘录像机 视频监控

(全球TMT2023年9月1日讯)8月30日,中国移动第四届科技周暨战略性新兴产业共创发展大会在北京举行。会上,中国移动携手爱立信等产业链十余家合作伙伴发布5G轻量化技术RedCap“1+5+5”创新示范之城。RedC...

关键字: 中国移动 爱立信 DC 终端

厦门2023年2月13日 /美通社/ -- 成都SKP项目位于交子公园商圈核心区,占地面积约190亩,总建筑面积34.4万m2,停车场面积约13.1万m2。该项目是交子金融商圈引入的首个高端百货业态,为亚洲最大的下沉式建...

关键字: 手机摄像头 终端 蓝牙技术 超声波

厦门2023年1月10日 /美通社/ -- 近日,湘佳橘友农业有限公司引进的第二条陶朗柑橘智能分选线正式投入生产,与前一年投产的第一条线组成12通道分选线,既可独立运行也可共线控制。至此,湘佳橘友的加工年产能可达10万吨...

关键字: 智能化 线控 精度 终端

具体到每一种无线连接技术,都会有优劣,所以系统工程师在开发智能终端时,往往选择支持多个无线传输协议,以适应更广泛的应用场景。“智能终端选择不同的无线传输协议,可以在不同的应用场景都能够得到很好的性能,而且支持不同无线协议...

关键字: 智能物联网 终端 无线连接

深圳2022年12月19日 /美通社/ -- 近日,作为全球领先的5G终端商用推动者,中兴终端荣获BSI颁发的“安全隐私合规先锋奖”。 图片备注: BSI授予中兴终端安全隐私合规先锋奖 隐私安全,用“兴”守护 中兴...

关键字: 中兴 终端 中兴通讯 ICT

深圳2022年11月11日 /美通社/ -- 2022年11月3日-5日,第四届华为开发者大会2022及OpenHarmony使能千行百业论坛率先在东莞松山湖举行。新国都作为OpenHarmony生态使能伙伴、...

关键字: 华为 终端 开发者大会 HARMONY
关闭
关闭