当前位置:首页 > 通信技术 > 通信技术
[导读]摘要:介绍了对数字信号的2ASK和FSK的调制的原理,软件实现流程以及硬件电路的设计,并给出了实验结果,从而证明了设计的可行性和合理性。 关键词:2ASK;FSK;调制原理 由于实际通信中不少信道都不能直接传

摘要:介绍了对数字信号的2ASK和FSK调制的原理,软件实现流程以及硬件电路的设计,并给出了实验结果,从而证明了设计的可行性和合理性。
关键词:2ASK;FSK;调制原理

    由于实际通信中不少信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变化,即所谓载波调制。在大多数数字通信系统中,都选择正弦信号作为载波。这是因为正弦信号形式简单,便于产生及接收。数字调制信号,在二进制时有振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)三种基本信号形式,同时可根据基带信号的进制不同分为二进制和多进制(M进制)。多进制数字调制与二进制相比,其频谱利用率更高。本文研究了基于Blackfin533的2ASK、2FSK以及8FSK的调制实现方法,并给出了其实验结果。

1 二进制振幅键控(2ASK)信号的原理及调制实现
    振幅键控是正弦载波的幅度随数字基带信号而变化的数字涮制。当数字基带信号为二进制时,则为二进制幅度键控(2ASK)。设发送的二进制符号序列是:

    利用VC++编程实现2ASK信号的流程图如图1所示。



2 2FSK、8FSK信号的原理及调制实现
    FSK是数字通信中使用较为广泛的一种方式。若正弦载波的频率随二进制基带信号在f1和f2两个频率点间发生变化,则产生二进制移频键控信号(2FSK)。若二进制基带信号的1符号对应于载波频率f1,0符号对应于载波频率f2,则二进制移频键控信号的时域表达式为

    利用VC++编程实现2FSK信号的流程图如图2所示。


    多进制数字频率调制系统(MFSK)基本上是二进制数字频率键控方式的推广。其时域表达式为:
   
    式中,△ωt(m=0,1,…,M-1)是与an对应的载波角频率偏移。在实际应用中,我们通常定义△ω1=△ω2=…=△ωm-1=△ω,则时域表达式可以写为:
   
    利用VC++编程实现8FSK信号的流程与2FSK类似,不同的只是增加了串并转换的模块和其它六种载波频率,所以这里对于8FSK的调制流程图就不再详细介绍了。

3 系统硬件和软件设计
    信号产生器系统分为两大模块,微型计算机模块和波形产生模块。其中微型计算机为通用计算机,波形发生模块为设计的信号发生板卡。通用计算机可以产生数字调制信号和噪声干扰信号,然后将数据通过USB接口传送到信号发生板卡。信号发生板卡将通过波形产生控制器循环取出波形存储器和噪声存储器中的数据,最后通过DAC产生连续的数字通信信号波形。
     如下图3所示的系统硬件设计框图。信号波形产生的核心是DSP1,它扩展了USB接口、大容量存储器、高速DAC和程序存储器等。DSP1完成通信信号产生、DSP2完成噪声(干扰)信号产生。两个DSP共享程序存储器,DSP1作为主控DSP。DSP2的程序通过SPI(高速同步串行口)方式加载,其主机是DSP1。


    在波形产生时,DSP1接收PC微机通过USB接口传送的波形数据包。将数据包中的通信波形数据通过DMA方式传送到通信和通信信号环境波形数据存储器。同时将信噪比参数和噪声数据(此处噪声数据为白噪声)通过SPI接口传送到DSP2,DSP2将噪声数据存储到噪声/干扰数据存储器。其中通信数据的高位(D15)为基带码流数据,用于恢复基带码流测试数据。
    系统中所有波形参数的采样频率为10MHz,数据容量为16M×16位,可存储1.5秒钟的波形数据。数据有效位数为14位。
    DSP1将存储的波形数据从存储器中循环读出,以DMA方式传送给DAC1,产生通信信号。DSP2利用程序产生随机地址,将存储的噪声波形数据从存储器中读出,并且根据信噪比进行幅度加权,然后传送给DAC2,产生噪声信号。两个DAC的位数是14位,并且设置为4倍插值方式,即DAC输入数据率为4MBPS,输出转换速率为16MBPS。DAC转换需要的时钟利用BF533的定时器产生,DAC连接在BF533数据总线的低14位D13~D0。基带码流通过DSP1的PFX引脚输出,经过驱动输出基带波形。DAC输出经过带通滤波器滤波,AD8054缓冲放大,并且将信号和噪声合成,生成需要产生的信号波形。


    系统中的微型计算机采用Windows2000/XP操作系统,其USB驱动程序由DDK开发,控制应用程序可通过VS2005进行开发。系统的软件设计主要是针对BF533进行编程。Blackfin系列DSP在软件方面支持C语言和汇编语言,同时支持二者的混合编程。过程序流程如图4所示。

4 实验输出波形
    通过双踪示波器来观察调制出的通信信号波形,在参数设置时选择0、1码元类型,以便对信号进行稳定的观察。这里我们给出了2ASK、2FSK的观察波形,如图5所示。南丁8FSK信号用示波器不能清晰的分辨,这里就不加以分析了由上图可以看出,信号调制的波形图基本符合理论与预期的目标结果,从而证明了此设计的可行性和合理性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。传感器有许多种,在先进测量技术这门课中提到了许多传感器,在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设...

关键字: 传感器 信号

高功率脉冲发射机作为一种能够产生高能量、短脉冲信号的设备,在众多领域发挥着关键作用。在雷达系统中,它为目标探测提供强大的发射功率,使得雷达能够在远距离精确识别和跟踪目标;在通信领域,可用于实现高速率、大容量的数据传输;在...

关键字: 高功率 脉冲发射机 信号

在当今数字化、智能化的时代,电子设备无处不在,从智能手机、智能家居到工业控制系统,它们在提升生活品质与生产效率的同时,也面临着高频干扰与兼容性问题的挑战。高频干扰会导致设备信号传输不稳定、数据丢失,甚至系统崩溃;兼容性问...

关键字: 高频干扰 兼容性 信号

频分复用(Frequency Division Multiplexing,FDM)是一种将通信信道的总带宽划分成多个互不重叠的子频带(子信道),并将这些子信道分配给不同信号独立传输的技术。它是实现多路通信的核心方法之一,...

关键字: 频带 调制

在当今电子技术飞速发展的时代,随着电子产品不断向小型化、高性能化迈进,印刷电路板(PCB)的设计变得愈发复杂和精密。过孔,作为 PCB 中连接不同层线路的关键元件,其对信号完整性的影响已成为电路设计中不可忽视的重要因素。...

关键字: 印刷电路板 电路设计 信号

在当今高速发展的电子系统领域,信号完整性已然成为确保系统性能与可靠性的关键要素。从驱动到连接器的信号传输路径宛如一条信息高速公路,而接收端则如同这条公路的终点收费站,其设置的合理性直接关乎信号能否准确无误地抵达目的地。若...

关键字: 信号 连接器 驱动

在电子系统设计与信号传输过程中,工程师们常常会遇到信号波形不理想的情况。其中,信号波形下降沿出现上冲现象是较为常见的问题之一。这种异常不仅会干扰信号的正常传输,影响系统的性能和稳定性,甚至可能导致系统出现误判等严重后果。...

关键字: 信号 干扰 电子系统

在印刷电路板(PCB)设计中,过孔作为连接不同层线路的重要元件,其对信号完整性的影响不容忽视。随着电子技术的飞速发展,电路的工作频率不断提高,信号上升沿时间越来越短,这使得过孔对信号的影响愈发显著。在许多情况下,我们必须...

关键字: 印刷电路板 过孔 信号

在电子电路设计中,24 位 RGB TTL 信号的布线是一个关键环节,其布线质量直接影响到系统的性能和稳定性。特别是在涉及显示设备等对信号完整性要求较高的应用场景中,遵循正确的布线要求至关重要。下面将从多个方面详细阐述...

关键字: 信号 布线 显示设备

在现代高速电子系统中,信号完整性(Signal Integrity, SI)已成为确保系统可靠运行的关键因素。信号完整性是指信号在传输路径上保持其原始特性的能力,当信号从驱动端出发,经过传输线到达连接器,最终被接收端接收...

关键字: 信号 传输路径 质量
关闭