当前位置:首页 > 通信技术 > 通信技术
[导读] CAN总线从上个世纪80年代开始,逐渐在汽车电子、轨道交通、医疗电子、工程机械等广泛的工业场合应用。这个“古老”的总线,最让人“不爽”的地方,就是一帧只能传输八字节数据,如果要一次传输更长字节,需要分帧,而选择一种可靠的分帧方法就是使用者一定要注意的。

 CAN总线从上个世纪80年代开始,逐渐在汽车电子、轨道交通、医疗电子、工程机械等广泛的工业场合应用。这个“古老”的总线,最让人“不爽”的地方,就是一帧只能传输八字节数据,如果要一次传输更长字节,需要分帧,而选择一种可靠的分帧方法就是使用者一定要注意的。

CAN总线作为汽车电子而生的总线,提出了“优先级自动仲裁”和“短帧快速传输”的控制概念,为了达到“高实时性”的快速控制目标。使用一帧八字节的通讯单元具有了一系列的优点缺点:

一、CAN通讯的优缺点:

l优点

(1)8个字节正好是8个字节、4个16位、2个32位、1个64位的变量的存放“容器”。那么用户只要在ID中存放“寄存器地址”,然后通过1帧来“读取”或者“修改”,对应的“数值”,这样比较方便;

(2)短帧提高总线共享速度。任何一个CAN节点发送报文,在发送一帧后,需要重新和其他节点竞争总线,这样只要用户设计适当的发送间隔,就可以保证所有的点“共享”总线,提高总线利用率,也保证每个节点的发送周期大致保证一致。

l缺点

(1)长数据传输时数据负载偏低。在多帧发送时,由于每帧发送都要发送CANID,所以实际的CAN数据所占的比例就很低了,以CAN扩展帧为例,其29位ID和64位的数据,导致数据承载只能达到60%。所以在长数据传输时,CAN甚至比不上同样波特率下的RS485/Modbus;

(2)长数据传输分帧丢帧,会导致整包传输失败。当需要一次传输超过8字节数据时,需要分多帧传输,如果其中一帧“丢失”,则会导致整个发送包的无效。这就要求接收节点对每一个分帧进行确认,以保证每一个分帧的到达,而这么做就会大大降低效率;

(3)长数据传输时同步性差。比如要同时输出动作超过8字节的控制命令时,由于每个帧到达有先后,先到的先动作,后到的后动作,就会引起输出的不同步性。

可见CAN总线在当前的主流应用中,主要矛盾集中在其8字节短帧的长数据传输上。因此世界广大科技工作者制定出一系列的改进和改革方法来解决这些缺点。

二、可靠CAN长数据通讯:

l升级为CANFD协议提高数据负载率

几年前,梅赛德斯奔驰的工程师们对CAN总线的制定单位CiA(CAN in Automatic)协会提出,奔驰已经将CAN用尽了。因为奔驰的工程师们通过不断优化通讯机制,已经将奔驰的CAN总线利用率提高到90%以上,已经无带宽可用,只能通过网关不断增加新的CAN网络来扩展数据通道。这样导致整车的总线区域越来越多。

车载以太网虽然可以解决数据量的问题,但其布线改变过大,成本上升过多,只适合于网关之间的通讯。所以CiA协议就联合各大车厂,制定出新一代的CANFD协议,以快速升级现有的CAN2.0B。其主要的内容就是将一帧的数据段由8字节提升到64字节,同时可以提升数据段的波特率,以缩短通讯时间。如图1所示。

图 1 CANFD报文提升数据负载率

这样,不需要每8字节就要发一次CANID,即使不提升波特率,也提升了8倍的数据负载率。如果提升了8倍波特率,则可以达到64倍的数据负载率,相当于扩充了64倍带宽。其提升效果非常明显。

l采用可靠的分帧协议

成熟的应用层协议都有可靠的分帧协议,比如CANopen,DeviceNET,J1939协议等,总的方针都是“握手”“传输”“确认”“结束”这四个过程循环。这里只介绍CANopen协议中的SDO多帧传输。

发送方(客户端)发送的报文CAN-ID为600h+Node-ID,接收方(服务器)成功接收后,回应CAN-ID为580h+Node-ID的报文。下载协议download protocol 如图2所示。

图2 普通SDO下载协议

上传协议upload protocol 如图3所示。

图 3普通SDO上传协议

l采用同步传输协议

同步传输,解决的就是实现整个网络的同步传输,如图4所示,就像阅兵分列式上的方阵,所有士兵迈着整齐的步伐行进。这里以CANopen的同步报文为例讲解。

图4同步协议与阅兵分列式

每个节点都以同步报文作为PDO(过程数据的)触发参数,为了保证时间准确性,该同步报文的COB-ID 具有比较高的优先级以及最短的传输时间。 CANopen选用80h作为同步报文的CAN-ID,如图5所示。

图5 同步报文

一般同步报文由NMT(网络管理)主机发出,CAN报文的数据为0字节。但如果一个网络内有2个同步机制,就需要设置不同的同步节拍,比如某些节点按1个同步帧发送1次PDO,其他的节点收到2个同步帧才发送1此PDO,

在同步协议中,有2个约束条件:

l同步窗口时间:索引1007h约束了同步帧发送后,从节点发送PDO的时效,即在这个时间内发送的PDO才有效,超过时间的PDO将被丢弃,当同步窗口结束后,开始同时执行动作。

l通讯循环周期:索引1006h规定了同步帧的循环周期,就是同步包发送的周期。

CAN总线在诸多爱好者的推动下,不断改进和改革自身,让这个古老的总线焕发出勃勃生机。广州致远电子有限公司,作为CAN总线在国内的重要推广者,CANScope总线综合分析仪已免费标配CANPRO软件,可以解析主流的CANOpen,DeviceNet,J1939协议。

图6 协议解析

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为了满足日益增长的数据处理需求,铁威马NAS推出了全新的性能巅峰2024年旗舰之作F4-424 Pro,并搭载了最新的操作系统--TOS 6。这款高效办公神器的问世,无疑将为企业和专业人士带来前所未有的便捷与效率。

关键字: 存储 Linux 服务器

Apr. 23, 2024 ---- 随着节能成为AI推理服务器(AI Inference Server)优先考量,北美客户扩大存储产品订单,带动QLC Enterprise SSD需求开始攀升。然而,目前仅Solidi...

关键字: SSD AI 服务器

在AI需求暴增、5G升级周期和汽车智能电动化等因素的推动下,全球电子市场进入新一轮的增长期,尤其是在通信电子、消费电子和汽车电子等领域。需求增长促使上游产能升级的同时,也带来了制造和设计上更严格的标准,各种电子零部件可以...

关键字: AI 服务器 5G

北京——2024年4月9日 越来越多的企业将关键性的工作负载放到云上,如何确保云上业务的连续性即云的韧性对企业来说就越来越重要。在亚马逊云科技,我们从一开始就在基础设施、服务设计与部署、运营模式和机制中将韧性考虑其中。例...

关键字: 服务器 存储 数据中心

目标应用包括电信设备、服务器和智能表计的电源,以及LED车灯或汽车低压DC/DC转换器

关键字: 二极管 服务器 智能表计

结合ST第三代碳化硅金属氧化物半导体场效晶体管、STGAP隔离驱动器和STM32微控制器技术,此图腾柱无桥式功率因数修正器(PFC)解决方案为一个即插即用的解决方案,满足数据中心之高阶服务器和电信通讯电源设计的需求...

关键字: 数据中心 服务器 碳化硅

康佳特扩展边缘服务器生态系统, 推出 µATX 服务器载板和基于最新英特尔至强处理器的 COMHPC Server模块

关键字: 处理器 服务器 AI

美国加利福尼亚州圣何塞 —— GTC —— 太平洋时间 2024 年 3 月 18 日 —— NVIDIA 于今日推出数十项企业级生成式 AI 微服务,企业可以利用这些微服务在自己的平台上创建和部署定制应用,同时保留对知...

关键字: AI 模型 生成式 AI 服务器

Mar. 7, 2024 ---- 2023年第三季供应商大幅减少产出,使得Enterprise SSD价格有撑,第四季合约价的反弹吸引买家积极购货,加上服务器品牌商需求也随着2024年企业资本支出展望优于去年,进而扩大...

关键字: NAND Flash 服务器 SSD

随着通用人工智能的发展,数据中心的计算需求逐步提高。针对多模态数据、大模型的推理和训练需要更高的算力支持,而随着算力提升与之而来的还需更关注在功耗方面的优化。对于头部云计算和服务厂商而言,针对专门用例提高每瓦性能变得至关...

关键字: ARM 服务器 AI Neoverse CSS
关闭
关闭