当前位置:首页 > 汽车电子 > 汽车电子
[导读]用有限元法分析静动态强度和结构刚度是现代汽车工业设计的必要手段。采用现代有限元结构分析技术,使汽车结构分析不再仅凭经验进行,并且可以获得设计的参变量(如绗架车厢的结构形式、构件的几何尺寸及其布置方式等)

用有限元法分析静动态强度和结构刚度是现代汽车工业设计的必要手段。采用现代有限元结构分析技术,使汽车结构分析不再仅凭经验进行,并且可以获得设计的参变量(如绗架车厢的结构形式、构件的几何尺寸及其布置方式等)与结构响应(如输出的应力和位移)之间的某种关系,还可以利用软件提供的可视化技术,实时地观察计算分析的结果,而利用这些信息就可以对结构进行优化。

本文主要讨论如何在绗架式汽车半挂运输车车厢有限元模型的基础上,结合汽车在实际运行中可能出现的典型情况,如匀速行驶,紧急制动及急速转弯等情况,研究相应载荷及边界约束条件施加的实现方法,分析车身结构的应力分布情况,给出强度和刚度分析评价结果。

1 有限元模型建立

绗架式汽车半挂运输车车厢为三轴式,其结构如图1所示。由于车厢是左右对称的,所以为了方便模型分析,对模型进行了简化,只选取了车厢的左侧面进行模拟分析。根据车厢的绗架式结构,确定使用2节点线单元建立车厢模型,由于车厢是固定在挂车上的,所以将车厢地面上和挂车车架连接的地方定义为固定点,车厢整体按绗架式结构,由钢管焊接而成,钢管材料选用A3钢,直径60mm,壁厚8mm,材料特性见表1。

 

 

 

 

2 模拟分析

2.1 匀速行驶情况

汽车匀速直线行驶时车速较高,动载荷最大。路面的反作用力使车厢承受对称的垂直载荷,它使车厢产生弯曲变形,其大小取决于作用在车身各处的静载荷及垂直加速度,要求车厢必须保证有足够的强度和抗疲劳能力。车厢在匀速行驶情况下的受力状况如图2所示。

 

 

a 剪力图 b 弯矩图

图2 匀速行驶情况下车厢的受力

由图2可以明显的看出在该情况下车厢的剪力主要集中在斜向杆与斜向杆的交界处;车厢的弯矩主要集中在斜向杆上,斜向杆是弯矩的主要承受者;车厢所受的轴力由上向下逐渐增加,在下端杆与杆的焊接处轴力达到最大。这是因为在匀速直线行驶情况下,车厢的受力主要受到本身自重的影响。由于是匀速直线行驶,横向杆和斜向杆的变形主要受重力影响,产生杆的中心部分有向下的趋势,所以中心部分的弯矩是最大的;越向下轴力越大,因为向下造成动载荷的叠加,尤其是在杆与杆的焊接处,叠加的更多,在侧门柱的下部达到最大值。

2.2 紧急制动情况

汽车行驶过程中遇到突发事件而采取的紧急制动行为,会使汽车车厢除受各部件的重力作用外,还受到纵向惯性力的作用,车厢在紧急制动情况下的受力状况如图3所示。

 

 

由图3可以看出,在紧急制动情况下车厢的应力主要集中在杆与杆的焊接处,各焊接点是受力最大的地方。因为在惯性力的作用下,车厢内部杆件之间的相互作用力都通过焊接点作用到杆上,而每根杆都是以两端点为固定点,焊接在一起的,所以各种应力就都集中到这些焊接处了。虽然焊接处的应力比较集中,受力较大,但弹性形变很小,并不影响到车厢的整体性能。

2.3 急速转弯情况

在急速转弯工况下,主要考虑当车厢以最大转向加速度0.4g转弯时,惯性力对车身的影响,由于左、右急速转弯情况下,车厢所受横向惯性力的大小相等,方向相反,所以只对一种情况分析即可,在这里选择左急速转弯情况下车厢的受力情况进行分析。车厢在左急速转弯情况下的受力状况如图4所示。由图4可以看出,车厢在做左急速转弯时,受到方向指向转弯中心的横向惯性力的影响,车厢发生弹性形变。由于车厢下方是固定的,所以车厢由下至上变形加大。在左急速转弯情况下,车厢的应力主要集中在杆件的底端,也就是车厢与车体的焊接处。这是因为车厢在左急速转弯情况下,厢体底端固定,上部是自由的,所以厢体由下至上变形加大,杆件所受惯性力也就集中体现在杆件底端的固定端上。

 

 

3 结论

在三种基本情况下,车厢的弹性形变并不大,有的甚至基本不发生形变,说明车厢可以承受正常情况下的载荷。在材料选择方面可以在不增加整体质量的情况下,多增加杆件或采用更细、强度更高的材料来代替,这样既不会降低车厢的结构强度,又能分散应力,缓解应力过度集中的情况。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭