当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:设计一套基于ZigBee和GSM远程无线控制系统,对农田里的滴灌系统进行远程控制。设计了上位机和农田中的ZigBee协调器,ZigBee协调器与ZigBee终端传输消息来对灌溉系统进行安全有效的控制。采用适合于ZigBee星型网

摘要:设计一套基于ZigBee和GSM远程无线控制系统,对农田里的滴灌系统进行远程控制。设计了上位机和农田中的ZigBee协调器,ZigBee协调器与ZigBee终端传输消息来对灌溉系统进行安全有效的控制。采用适合于ZigBee星型网络的时间同步算法,满足ZigBee节点的同步休眠与唤醒的需要。设计相应的电磁阀控制策略对电磁阀进行安全有效的控制。
关键词:ZigBee;时间同步;休眠;无线遥控灌溉控制;低功耗

引言
   
本系统在传统的滴水灌溉系统基础上,在农田中采用ZigBee自组网网络进行信息的传输,不用在农田中布置通信线路;远程数据的传输采用GSM网络,不需要额外地布置通信设备,减少了农田灌溉的成本,增加了系统的安全性。系统采用具有低功耗特性的ZigBee无线自组网单片机,采用两节干电池供电,节约对能源的消耗。农田中的无线传感网络可以实时地采集灌溉系统的运行状况,将其传输到远程的监控系统,工作人员实时远程控制灌溉,极大地节省了劳动力,提高了工作效率,增加了农民的收入。

1 系统总体设计
   
农田种植面积大,地块分散,这就决定了采集系统应具有如下两个主要特点:一是系统控制节点多;二是系统是一个覆盖面很广的通信网络(采集点具有分散性)。基于上述特点,系统设计为分布式体系结构,主要包含农田监控终端和监控管理中心两个模块,而农田监控终端由于功能的不同又分为ZigBee终端和ZigBee协调器(与上位机交互的终端)。基于上述分析本系统采用ZigBee技术和GSM技实现系统网络的组件和数据的传输。其系统结构如图1所示。


    远程的监控管理中心通过GSM网络发送控制指令到农田中的ZigBee协调器,ZigBee协调器收到控制指令后,将其转发到ZigBee终端,以实现对灌溉系统的控制。首先监控管理中心的计算机通过RS232接口向GSM无线通信设备PTM100发送AT命令,PTM100以短消息形式通过GSM网络把控制命令发送到农田ZigBee协调器,ZigBee协调器根据监控管理中心发送的控制命令,向相应的终端发送控制命令,控制电磁阀的关断,Zig Bee终端采集电磁阀的状态通过无线网络传输到ZigBee协调器,再通过GSM网络将电磁阀的状态传输到数据终端。

2 系统硬件设计
   
根据系统功能的要求,系统的硬件电路分为太阳能充电电路、CC2530供电电路、电磁阀驱动电路。
2.1 太阳能充电电路
   
由于ZigBee协调器不能睡眠而且加入了GSM模块,ZigBee协调器耗电量比较大,因此ZigBee协调器必须采用太阳能电池板供给电池充电。其充电电路如2所示。


    太阳能电池板接在J1处,CN3082是一块太阳能充电管理芯片。当输入电压大于电源低电压检测阈值时,CN3082开始对电池充电,在预充电状态和恒流充电状态,引脚输出低电平,表示充电正在进行。如果电池电压反馈输入端FB引脚电压低于1.54 V,充电器处于预充电状态,充电电流为所设置的恒流充电电流的20%。电池电压反馈输入端FB引脚电压大于1.54 V且小于2.445 V时,充电器采用恒流模式对电池充电,充电电流由电阻R1确定。当电池电压反馈输入端FB引脚电压大于2.445 V时,CN3082处于维持充电状态,维持充电电流由输入电压VIN、R2和R1决定。在维持充电状态,当电池电压反馈输入端FB引脚电压下降到1.65 V时,CN3082将开始新的充电周期,进入预充电状态或者恒流充电状态。
2.2 CC2530供电电路
   
由于CC2530的供电电压为2~3.6 V,而充电电池的输出电压为3.7 V,因此用充电电池供电的CC2530供电电路必须经过一个线性稳压电路,使其输出电压变为2~3.6 V,电路如图3所示。其中CAT6219—330是一块输出电流最大为500 mA、输出电压为3.3 V的线性稳压器件,EN端为输入使能端,高电平时输入有效。为了提高瞬态响应,在5脚加一个2.2μF的旁路电容,为了提高电压抑制比和减少输出电压的噪声,在4脚处接一个0.01μF的旁路电容。


2.3 电磁阀驱动电路
   
由于CC2530的驱动电路很小,不能驱动电磁阀里面的电机,使电磁阀关断,所以必须在CC2530的I/O和电机之间加上驱动电路来驱动电机,其电路图如图4所示。


    J2接电磁阀的输入端,L7010为电机驱动模块,其工作电压最低可以达到1.8 V,持续驱动电流达1 A,尖峰工作电流可以达到2 A,并且可以方便地控制电机的正反转,其中VM为电机电源,VCC为芯片电源。

3 系统软件设计
3.1 系统控制协议设计
3.1.1 上位机向下位机发送控制消息
   
由于上位机发送指令时,是通过手机短信发送出去的,并且由于垃圾短信的存在,终端难免会收到一些和控制无关的指令,因此当解析短信中的控制指令时,必然会使一些短信无法解析或者解析出错误的控制信息。不能解析出控制指令会使程序出现运行错误,使整个系统瘫痪;而解析出错误的控制指令将使电磁阀出现误动作,影响控制效果。因此,为了保证系统的安全性和健壮性,必须设计相应的协议。为了区分控制信息和非控制信息,必须有一个标志来加以区分,本文采用一个字节表示消息类型。每一个节点有4个电磁阀,所以采用一个字节可以描述一个电磁阀的控制信息。为了减少终端的控制和命令解析的难度,将此字节的剩下4位作为每一个电磁阀有无控制信息的标志。如果每一个节点都单独发送一条控制短信,必然会加重系统的负担,使电能消耗增加,所以本系统将所有节点的控制组合在一条短信中发送出去。其消息结构如下所示。


    消息类型域,其长度为1个字节。应用中设置成表1消息类型域,其长度为1个字节。应用中设置成表1中的某值。


    控制消息域,其长度根据具体农田里的终端个数决定,一个终端采用一个字节,其中每两位为一个电磁阀的控制信息,应用中应设置成表2所列的值。

3.1.2 下位机向上位机发送数据消息
   
上位机向下位机发送控制指令后,下位机将会向上位机发送相应的回复信息,以告诉上位机下位机对所发送指令的执行情况,这种信息包括两类:第一类是上位机发送完控制指令后,下位机收到指令的一个确认状态回复,其消息类型值见表1;第二类消息是下位机对上位机发送的控制指令执行后的电磁阀信息,电磁阀的状态信息格式如下。


    其消息类型见表1。字节2以后的字节表示电池阀的状态,每一个字节表示一个终端节点,其中低4位为电磁阀状态。由于ZigBee协调器节点可能没有收到终端采集到的电磁阀状态数据,所以用第4位来表示低4位是否为电磁阀状态,1为是,0为不是。



3.1.3 ZigBee网络通信协议设计
   
(1)ZigBee协调器消息处理
    ZigBee协调器通过UART接口从短信模块中读取短信的内容后,将其保存在ZigBee协调器中,等待ZigBee终端醒来后发送询问消息。如果询问后ZigBee协调器保留了控制消息,那么ZigBee协调器将保存的控制指令以广播的形式发送出去,如果终端询问过后ZigBee协调器没有控制指令,那么ZigBee协调器将发送无控制消息到ZigBee终端。
    ZigBee协调器发送数据后等待ZigBee终端回复确认信息,其信息格式如下。


    其消息类型域取值见表1。协调器收到ZigBee终端的回复消息后,将该节点号所对应的字节的控制消息全部位置0,使下次广播控制指令后,该终端节点不会采取相应动作。
    当ZigBee协调器发送完控制消息后,等待接收终端电磁阀的状态,ZigBee协调器收到所有ZigBee终端的电磁阀状态信息或者等待时间超时后,向上位机发送已接收到的电磁阀信息。
    ZigBee协调器的消息处理流程如图5所示。


    (2)ZigBee终端消息处理
    由于ZigBee终端是完全由电池供电,所以ZigBee终端必须定时睡眠来节约能量,使终端工作时间可以尽可能地长。因此,ZigBee协调器收到控制信息后不可能直接发送给终端,必须先存储,ZigBee终端为了获得控制消息,在醒来后必须向协调器发送询问消息,使ZigBee协调器发送控制消息。
    ZigBee终端收到ZigBee协调器发送来的控制指令后,向ZigBee协调器发送确认消息,使ZigBee协调器更改相应的节点状态,避免重复发送控制指令到ZigBee终端,增加ZigBee终端的负担。
    ZigBee终端收到控制信息后,获取本节点的控制信息,判断是否有控制信息。如果有控制信息,为了使ZigBee终端的电磁阀中的电机不出现卡死的现象,ZigBee终端必须判断当前的控制状态是否和电磁阀当前的状态相同。如果相同,则对电磁阀不采取任何控制动作;如果不同,则根据控制信息对电磁阀采取相应的控制。对控制信息进行判断后,为了使电磁阀对控制信息有充分的反应时间,延时1 s采集电磁阀的控制信息,然后将其传送到ZigBee协调器,其处理流程图6所示。


    回复到ZigBee协调器的电磁阀的状态信息的消息格式如下。


    其中消息类型域的值见表2。电磁阀状态域低4位存放电磁阀的状态,每一位存放一个电磁阀的状态。
3.2 低功耗与同步设计
   
由于ZigBee终端节点是采用电池供电,所以ZigBee终端节点必须定时地休眠和唤醒以节约能量,使电池的供电时间更长。如果本系统的ZigBee网络采用网状结构和树状结构,那么路由器节点必须在非路由器节点之前醒来,这样必然会增加系统的控制难度,最糟糕的情况下可
能会使整个系统无法控制,并且可能使终端节点不定期的掉线。所以本系统采用星型网络,终端节点直接和协调器节点交互信息。
3.2.1 ZigBee节点同步
    ZigBee节点之间的误差主要是传输延时和节点之间的时钟误差。
    (1)节点时钟误差测量
    ZigBee协调器节点先发送广播数据包,其中带有协调器节点下一次发送数据包的时间T1。节点收到数据包后,启动定时器等待接收Zig Bee协调器下次发送数据,当ZigBee终端节点收到下一次同步数据后,读取定时器的时间为T2,所以时钟偏移误差为:a=(T2-T1)/T1。
    (2)延时误差
    ZigBee终端节点向ZigBee协调器节点发送同步信息,ZigBee协调器收到同步信息后回复一个同步信息到ZigBee终端,ZigBee终端收到此回复信息的时间为T3。假设传输的延时一样,为T4,则T4=(1+a)×T3/2。
3.2.2 ZigBee终端节点睡眠
   
当ZigBee协调器接收到所有节点的状态回复后,广播一个睡眠消息到ZigBee终端,消息中加入睡眠的时间T5,ZigBee终端收到此时间后,开始睡眠,其睡眠时间为T5-T4-a×(T5-T4)。节点醒来后,再延时1 s发送询问消息到协调器,获得控制消息。

结语
    本系统经过现场调试,能够对上位机发送的控制指令进行准确的控制。节点定时地睡眠和苏醒,能够有效地节约电量,两节干电池能够工作6个月到两年,为系统在农田这种无电源供电场合提供保障。采用同步算法和一些辅助措施,使系统能够在同一时间苏醒、同一时间睡眠,ZigBee终端节点同一时间接收到ZigBee协调器广播控制指令数据包的概率在90%以上,更加节约能源。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2024年4月17日 /美通社/ -- 在2024 F1中国站即将拉开帷幕之际,高端全合成润滑油品牌美孚1号今日举办了品牌50周年庆祝活动。三届F1年度车手总冠军马克斯•维斯塔潘也亲临现场,共同庆祝这一里程...

关键字: BSP 汽车制造 行业标准 产品系列

北京2024年4月17日 /美通社/ -- 2024年4月13日,由北京康盟慈善基金会主办的"县域诊疗,规范同行"——肿瘤诊疗学术巡讲项目首站在广州隆重召开。本次会议邀请全国多位肺癌领域专家和县域同道...

关键字: AI技术 医疗服务 BSP 互联网

海口2024年4月16日 /美通社/ -- 4月14日,在中法建交60周年之际,科学护肤先锋品牌Galenic法国科兰黎受邀入驻第四届中国国际消费品博览会(以下简称"消博会")法国馆。Galenic法...

关键字: NI IC BSP ACTIVE

上海2024年4月17日 /美通社/ -- 每年4月17日是世界血友病日。今年,世界血友病日以"认识出血性疾病,积极预防和治疗"为主题,呼吁关注所有出血性疾病,提升科学认知,提高规范化诊疗水平,让每一位出血性疾病患者享有...

关键字: VII 动力学 软件 BSP

伦敦2024年4月16日 /美通社/ -- ATFX宣布任命Siju Daniel为首席商务官。Siju在金融服务行业拥有丰富的经验和专业知识,曾在全球各地的高管职位上工作了19年以上。Siju之前担任FXCM首席商务官...

关键字: NI AN SI BSP

物联网应用中常见的通信技术包括有线通信技术和无线通信技术两大类。有线通信技术包括以太网、RS-232、RS-485、M-Bus和PLC等技术。这些技术通过物理线路进行数据传输,具有稳定性强、可靠性高的优点,但是受限于媒介...

关键字: 物联网 Zigbee

ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802.15.4标准规范的媒体访问层与物理层。主要特色有低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑。

关键字: Zigbee 通信 无线网上协议

随着物联网技术的快速发展,各种无线通信技术不断涌现,其中Zigbee通信技术以其低功耗、低成本、高可靠性等优点,在智能家居、工业自动化、农业物联网等领域得到了广泛应用。本文将介绍Zigbee通信技术及其主要特征。

关键字: Zigbee 物联网

ZigBee无线通信技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术。这种技术主要适用于自动控制和远程控制领域,可以嵌入各种设备中,同时支持地理定位功能。

关键字: Zigbee 物联网
关闭
关闭