当前位置:首页 > EDA > 电子设计自动化
[导读]多状态机的协同设计


作者Email:  zlyadvocate@163.com

    随着微电子技术的迅速发展,人们对数字系统的需求也在提高[ 1 ]。不仅要有完善的功能,而且对速度也提出了很高的要求。对于大部分数字系统,都可以划分为控制单元和数据单元两个组成部分。通常,控制单元的主体是一个有限状态机 ,它接收外部信号以及数据单元产生的状态信息,产生控制信号序列。有限状态机设计的关键是如何把一个实际的时序逻辑关系抽象成一个时序逻辑函数,传统的电路图输入法通过直接设计寄存器组来实现各个状态之间的转换, 而用硬件描述语言来描述有限状态机, 往往是通过充分发挥硬件描述语言的抽象建模能力,通过对系统在系统级或寄存器传输级进行描述来建立有限状态机。EDA 工具的快速发展,使通过CAD快速设计有限状态机自动化成为可能。

    传统上在系统级和寄存器传输级完成VHDL 的描述主要分以下几步:

    (1) 分析控制器设计指标, 建立系统算法模型图;
    (2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
    (3) 应用VHDL 语言完成描述。

    使用XILINX的ISE6.1软件包的辅助工具STATECAD能加速有限状态机设计,大大简化状态机的设计过程,实现状态机设计的自动化。使用STATECAD进行状态机设计的流程如下:

    (1) 分析控制器设计指标, 建立系统算法模型图;
    (2) 分析被控对象的时序状态, 确定控制器有限状态机的各个状态及输入.输出条件;
    (3) 在STATECAD中输入有限状态机状态图,自动产生VHDL模型描述,使用STATEBENCH进行状态转移分析,分析无误后使用导出VHDL模型块到ISE中进行仿真后综合,实现到CPLD或FPGA的映射。

    设计人员的主要工作在第一步。第二步,第三步基本上可以通过STATECAD完成有限状态机的自动生成和分析,还可以利用分析结果来对被控对象的逻辑进行分析,改进,完善系统控制逻辑。

    在需要并行处理的场合,往往需要采用多状态机来完成系统的控制任务,这时状态机之间的同步问题往往是设计者需要仔细考虑的问题。如果采用完全人工输入代码的方法来设计,往往力不从心。采用STATECAD完成整个控制逻辑的设计并对设计结果进行验证更能体现CAD设计方法的优势,加速产品开发进度,提高设计生产率。

    下面以一个双状态机设计过程来介绍如何使用STATECAD进行多状态机的协同设计。

    有二个状态机,一个负责对M0写,一个负责对M0读操作,为了简单起见,系统已经尽量简化了。
    负责对M0写的状态机包括四个状态:
    STATE0:写状态机复位后初始化;
    write0:对M0写,写满4个转到m0full;
    m0full:M0满状态;
    m0writewait:等待。M0满时转入write0状态。
    负责对M0读的状态机包括四个状态:
    STATE1:读状态机复位后初始化
    read0:对M0读,读4个转到m0empty
    m0empty:M0空状态
    m0readwait:等待。M0空时转入read0状态

    负责对M0写的状态机必须知道M0是空的,而负责对M0读的状态机必须知道M0是满的才能读。读完了通知负责对M0写的状态机M0是空的,可以写了。二个状态机同时并行工作。M0写的状态机在写操作完了,就等待M0空。M0读的状态机在读操作完了,就等待M0满。在STATECAD中,状态本身可以作为其他状态机的转移条件。这也正是在进行多状态机的协同设计中最需要的功能,能大大方便多状态机的设计。

输入完状态图,就基本完成了状态机的设计过程。进行逻辑优化(工具自动进行逻辑优化)后,使用STATEBENCH进行状态转移分析。以下是自动状态转移模拟波形。

由以上的波形看到状态机的工作过程符合设计逻辑。对单独的器件操作也许不需要采用多状态机的设计方法,但在多器件需要并行工作时,多状态机的协同设计就显得必要了。导出VHDL模型块到ISE中进行仿真后综合,这里就不多讲了,以下是产生的代码:
--  D:XILINXTUTORIALDUOZTJI.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;


LIBRARY ieee;
USE ieee.std_logic_unsigned.all;

ENTITY SHELL_DUOZTJI IS
 PORT (CLK,RESET: IN std_logic;
  dcounter0,dcounter1 : OUT std_logic);
 SIGNAL BP_dcounter0,BP_dcounter1,readcounter0,readcounter1: std_logic;
END;

ARCHITECTURE BEHAVIOR OF SHELL_DUOZTJI IS
 SIGNAL sreg : std_logic_vector (1 DOWNTO 0);
 SIGNAL next_sreg : std_logic_vector (1 DOWNTO 0);
 CONSTANT m0full : std_logic_vector (1 DOWNTO 0) :="00";
 CONSTANT m0writewait : std_logic_vector (1 DOWNTO 0) :="01";
 CONSTANT STATE0 : std_logic_vector (1 DOWNTO 0) :="10";
 CONSTANT write0 : std_logic_vector (1 DOWNTO 0) :="11";

 SIGNAL sreg1 : std_logic_vector (1 DOWNTO 0);
 SIGNAL next_sreg1 : std_logic_vector (1 DOWNTO 0);
 CONSTANT m0empty : std_logic_vector (1 DOWNTO 0) :="00";
 CONSTANT m0readwait : std_logic_vector (1 DOWNTO 0) :="01";
 CONSTANT read0 : std_logic_vector (1 DOWNTO 0) :="10";
 CONSTANT STATE1 : std_logic_vector (1 DOWNTO 0) :="11";

 SIGNAL next_BP_dcounter0,next_BP_dcounter1,next_readcounter0,
  next_readcounter1 : std_logic;
 SIGNAL BP_dcounter : std_logic_vector (1 DOWNTO 0);
 SIGNAL dcounter : std_logic_vector (1 DOWNTO 0);
 SIGNAL readcounter : std_logic_vector (1 DOWNTO 0);
BEGIN
 PROCESS (CLK, next_sreg, next_BP_dcounter1, next_BP_dcounter0)
 BEGIN
  IF CLK='1' AND CLK'event THEN
   sreg <= next_sreg;
   BP_dcounter1 <= next_BP_dcounter1;
   BP_dcounter0 <= next_BP_dcounter0;
  END IF;
 END PROCESS;

 PROCESS (CLK, next_sreg1, next_readcounter1, next_readcounter0)
 BEGIN
  IF CLK='1' AND CLK'event THEN
   sreg1 <= next_sreg1;
   readcounter1 <= next_readcounter1;
   readcounter0 <= next_readcounter0;
  END IF;
 END PROCESS;

 PROCESS (sreg,sreg1,BP_dcounter0,BP_dcounter1,readcounter0,readcounter1,
  RESET,BP_dcounter,readcounter)
 BEGIN
next_BP_dcounter0 <= BP_dcounter0;next_BP_dcounter1 <= BP_dcounter1;
next_readcounter0 <= readcounter0;next_readcounter1 <= readcounter1;
BP_dcounter <= (( std_logic_vector'(BP_dcounter1, BP_dcounter0)));
readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));

next_sreg<=m0full;
next_sreg1<=m0empty;

IF ( RESET='1' ) THEN
 next_sreg<=STATE0;
 BP_dcounter <= (std_logic_vector'("00"));
ELSE
 CASE sreg IS
  WHEN m0full =>
   next_sreg<=m0writewait;
   BP_dcounter <= (( std_logic_vector'(BP_dcounter1, BP_dcounter0)));
  WHEN m0writewait =>
  IF (  (sreg1=m0empty)) THEN
   next_sreg<=write0;
   BP_dcounter <= (( std_logic_vector'(BP_dcounter1, BP_dcounter0)) +       std_logic_vector'("01"));
  ELSE
   next_sreg<=m0writewait;
   BP_dcounter <= (( std_logic_vector'(BP_dcounter1, BP_dcounter0)));
  END IF;
   WHEN STATE0 =>
   next_sreg<=write0;
   BP_dcounter <= (( std_logic_vector'(BP_dcounter1, BP_dcounter0)) +
      std_logic_vector'("01"));
  WHEN write0 =>
  IF ( BP_dcounter0='1' AND BP_dcounter1='1' ) THEN
   next_sreg<=m0full;
   BP_dcounter <= (std_logic_vector'("00"));
  ELSE
      next_sreg<=write0;
   BP_dcounter <= (( std_logic_vector'(BP_dcounter1, BP_dcounter0)) +
       std_logic_vector'("01"));
  END IF;
  WHEN OTHERS =>
   END CASE;
 END IF;

IF ( RESET='1' ) THEN
 next_sreg1<=STATE1;
 readcounter <= (std_logic_vector'("00"));
ELSE
CASE sreg1 IS
WHEN m0empty =>
 next_sreg1<=m0readwait;
 readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));
WHEN m0readwait =>
 IF (  (sreg=m0full)) THEN
     next_sreg1<=read0;
 readcounter <= (( std_logic_vector'(readcounter1, readcounter0)) +
       std_logic_vector'("01"));
  ELSE
  next_sreg1<=m0readwait;
  readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));
  END IF;
WHEN read0 =>
 IF ( readcounter0='1' AND readcounter1='1' ) THEN
  next_sreg1<=m0empty;
  readcounter <= (std_logic_vector'("00"));
 ELSE
  next_sreg1<=read0;
  readcounter <= (( std_logic_vector'(readcounter1, readcounter0)) +
       std_logic_vector'("01"));
 END IF;
WHEN STATE1 =>
 IF (  (sreg=m0full)) THEN
  next_sreg1<=read0;
  readcounter <= (( std_logic_vector'(readcounter1, readcounter0)) + std_logic_vector'("01"));
 ELSE
  next_sreg1<=STATE1;
  readcounter <= (( std_logic_vector'(readcounter1, readcounter0)));
 END IF;
WHEN OTHERS =>
  END CASE;
END IF;

next_BP_dcounter1 <= BP_dcounter(1);
  next_BP_dcounter0 <= BP_dcounter(0);
  next_readcounter1 <= readcounter(1);
  next_readcounter0 <= readcounter(0);
 END PROCESS;

 PROCESS (BP_dcounter0,BP_dcounter1,dcounter)
 BEGIN
  dcounter <= (( std_logic_vector'(BP_dcounter1, BP_dcounter0)));
  dcounter0 <= dcounter(0);
  dcounter1 <= dcounter(1);
 END PROCESS;
END BEHAVIOR;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY ieee;
USE ieee.std_logic_unsigned.all;

ENTITY DUOZTJI IS
 PORT (dcounter : OUT std_logic_vector (1 DOWNTO 0);
  CLK,RESET: IN std_logic);
END;

ARCHITECTURE BEHAVIOR OF DUOZTJI IS
 COMPONENT SHELL_DUOZTJI
  PORT (CLK,RESET: IN std_logic;
   dcounter0,dcounter1 : OUT std_logic);
 END COMPONENT;
BEGIN
 SHELL1_DUOZTJI : SHELL_DUOZTJI PORT MAP (CLK=>CLK,RESET=>RESET,dcounter0=>
  dcounter(0),dcounter1=>dcounter(1));
END BEHAVIOR;

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭