当前位置:首页 > EDA > 电子设计自动化
[导读]使用PSOC片上系统芯片CY8C2714,结合电容式感应原理,可设计一种基于PSoC微处理器芯片的电式感应按键,实现按键的非接触式可靠设计。

  :非接触式操作界面正逐渐取代普通按键,成为常用的人机交互工具。使用PSOC片上系统芯片CY8C2714,结合电容式感应原理,可设计一种基于PSoC微处理器芯片的电式感应按键,实现按键的非接触式可靠设计。PSoC片上系统芯片是具有高速内核、快闪内存和SRAM数据内存的高性能芯片,具有独立的程序存储器和数据存储器总线,设计者可自配置模拟模块和数字模块。

关键词:电容式  PSoC非接触式  感应按键

 

    电容式感应技术正在迅速成为面板操作和多媒体交互的全新应用技术,其耐用性和降低BOM成本方面的优势,使这种技术在非接触式操作界面上得到广泛的应用。本文采用PSOC片上系统芯片,实现了非接触式、稳定可靠的电容式感应按键的设计。

 

1  PSoC片上系统

    PSoC微处理器由处理器内核、系统资源、数字系统和模拟系统组成。PSoC片上系统包含8个数字模块和12个模拟模块。这些模块都可进行配置,用户通过对这些模块进行配置,定义出用户所需要的功能。数字模块可配置成定时器、计数器、串行通信口(UARTS)CRC发生器、PWM脉宽调制等功能模块。模拟模块可配置成模数转换器、数模转换器、可编程增益放大器、可编程滤波器、差分比较器等功能模块。数字模块和模拟模块也可构成调制解调器、复杂的马达控制器、传感器信号的处理电路等。

 

2  电容式感应原理

电容开关是一对相邻电极,在电极之间有很小的电容。当一个导体接近两个电极时,在电极与导体之间会产生一个耦合电容。在这里,手指就是这个导体。通常电容开关的形式是一边接地的电容,导体的存在增加了开关到地之间的电容。检测是否有手指靠近,也就是检测是否有按键按下,可依据电容的变化来判断。检测电容变化的方法有很多:电流与电压相位差检测、电容构成振荡器进行频率检测、电容桥电荷转换检测。因为电容桥电荷转换检测的方法较适用于大量按键扫描和PSoC的性能,所以在此采用该方法进行检测。电荷转换电路从概念上来说与RC充放电路相似,如图1 所示。电荷转移的优点是不需要附加电阻器件。Cp是感应的电容,它的值随着电极材料上所加导体而改变。Csum是参考总电容。

 

    在检测周期开始,通过一个复位开关把Csum上的电荷全部放掉。然后通过单刀双向开关使CD工作在非重迭的周期上。在第一半周,Cp连接到VDD充电。当Cp上的电荷以由Cp值决定的速度充到VDD时,开关断开,然后把开关连接到CsumCp上的电荷转移到Csum中。


    在图
1中,因为Csum的电容值比CP大得多,所以Csum上的电压值在充电的每一周期内只有微小的增加。这个CpCsum上的电荷转换周期重复许多次,以使Csum上积累到一个大的信号值。当连接到VDD时,电容Cp上的电荷为:

Q=CV    (1)


    不是
Cp上的所有电荷都转移到Csum中。当Cp上的电压跌落到Csum上的预存电压时,转换便不再进行。为检测感应的电容值是否有改变,可通过Cp-Csum的充放电方式,把Csum充到固定的阈值VTH,再计算到达这个阈值时的周期数。在任意采样点nCsum上的电压值为:

2示出了充放电115 ms后的电荷转换波形。

 

    其充放频率为6 MHz,所以其转换次数为700次。


    式
(2)很明显是一个指数函数,即电压值Vsum为:

 

检测Cp的变化率,可通过比较VsumVTH得到。即计算Vsum充到VTH时的充放电次数n

 

当手指靠近时,Cp变成电极感应电容和手指接近产生的耦合电容之和CF+P,所以Csum充电到阈值VTH的速度更快,充放电周期数n也就更小:

  

这样,检测是否有键按下就简化成了检测周期数的变化率△n=nnF+P°当△n>nTH时,表明有手指靠近。

 

3  电容式非接触按键的设计与实现

3.1  电容式非接触按键的硬件电路设计

电容式非接触按键的硬件电路如图3所示。该设计中,通过PSoC芯片CY8C2714循环检测感应电极的状态来判断是否有按键按下。该系统的硬件设计非常简单,感应电极不需要附加任何元器件。IOPO2P06共连接4个按键感应电极,芯片通过内部硬件配置和软件算法,对感应电极上是否有手指按下进行检测。另外,PSoC芯片可外接ISSP接口实现在线编程。

 

 

3.2  电容式非接触按键的软件实现

非接触按键的检测,须通过比较器、充电电流源和复位开关组成一个张弛振荡器,来对按键电极电容充放电。PSoC内部用户模块配置如图4所示。比较器占用一个模拟模块,它的同相输入端由多路模拟开关连接到I/O口上,反相输入端接内部参考电压VBG作为电容充电阈值VTH,与同相输入端进行比较。输出端连接比较逻辑输出总线0。总线与通用输出口连通,再把通用输出口4和通用输入口4连接在一起,作为PWM的时钟输入线。PWM脉宽调制模块占用1个数字模块,其时钟输入连到比较器的输出,PWM的输出连接到定时器的捕获脚。116位定时器占用2个数字模块,对PWM输出的脉冲进行定时。

 

非接触式感应按键的实现过程为:首先设置IO口的输出驱动模式,开始扫描按键,把按键连接到模拟多通道输入口,使能振荡器。当Cp上的电压线性增加到阈值时,比较器输出高电平。刷新定时器和PWM的周期数,重设计数值,置完成标志位。当扫描完成,停止PWM,定时器中断服务完成。最后根据电容感应原理,计算出定时器的周期数来判断是否有按键按下。在本设计中,如式(5)所示,选取Csum值,使充放电周期数n=1000次时,Vsum到达VTH。当检测到nf+p<800,即Δn>nTH=200时,认为有键按下。  


 

    本设计中,基于 PSoC片上系统新片的非接触式感应按键界面,有着非接触、可靠和设计简单的特点。这种方便、灵活的操作界面已在家电和控制系统中得到饿应用和推广,所以关于电容式感应按键技术的应用将会是嵌入式系统中的一个研究热点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭