当前位置:首页 > 工业控制 > 电子设计自动化
[导读]当面临更高带宽和更快上市时间的要求时,设计人员将面临新的挑战。较高的数据传输速率使得更高带宽成为可能,同时它们会限制传输距离(由于信道损失增大),使信号的完整性降级,并降低制造良率。解决这些挑战需要时间和资源,这会对系统设计进度造成负面影响,更糟糕的是,在设计系统时,这类负面影响可能并不明显。

 当面临更高带宽和更快上市时间的要求时,设计人员将面临新的挑战。较高的数据传输速率使得更高带宽成为可能,同时它们会限制传输距离(由于信道损失增大),使信号的完整性降级,并降低制造良率。解决这些挑战需要时间和资源,这会对系统设计进度造成负面影响,更糟糕的是,在设计系统时,这类负面影响可能并不明显。

通过在接收器处引入PCI Express 4.0(PCIe 4.0)通路裕量特性,PCI-SIG正在解决该项挑战,通过引入该项特性,系统设计人员能够评估其系统的性能变化容差。通路裕量允许系统设计人员使用PCIe 4.0装置来测量每一系统中的可用电气裕量。在本文中,介绍了通路裕量特性,以及它是如何使设计人员按时交付更健壮系统的。

系统中的性能变化

PCI Express是一种点对点互连,它支持内部和外部连通性,或是通过线缆进行,板级连接。有三种常见的板级连接情形,它们是芯片对芯片(无连接器)、单个板和连接器的扩展卡接口、以及带多个板和连接器的背板。在复杂的背板情形下,很多原因都可能会导致信号完整性降级,包括串扰、反射、不连续和信道损失。在图1中,给出了一个在FR-4印刷电路板(PCB)上的信道损失差异示例,其中,与8 GT/s PCIe 3.0相比,24英寸走线在16 GT/s PCIe 4.0下具有更高的损失。

 

 

图1:6”/12”/18”/24” FR-4 6mil条线PCB上的插入损失

由于PCB和连接器制造方面的差异,对于某一插槽中的某一卡,与运行在另一插槽上的采用不同制造的另一卡相比,会具有不同的信号性能,如图2所示。由于PCB制造变化,如板层厚度、走线宽度或走线间距,都会增大信道损失、阻抗和系统噪音。对于它们中的任一个或全部,会影响信号眼图的质量和打开尺寸。在不同厂家或来自同一制造商的不同批次之间,可看到这类PCB差异。

 

 

图2:在背板系统中造成性能变化的影响因素

环境变量也会影响系统中的信号性能,如温度和湿度,PCB和连接器特性变化会影响实际信道损失和信号完整性。

在更高的数据率下,制造和环境变化的影响会放大。因此,在发布之前,设计人员必须仔细评估高速系统的工作安全系数,避免在最后一分钟进行系统优化,这会延迟推向市场的时间。在构建最终系统之前,进行建模和模拟相当复杂、耗时且成本昂贵。为了避免这些问题,系统设计人员需要使用有效且经济的方法来执行裕度分析。

使用通道极限来克服性能变化问题

对于所有的PCIe 4.0端口,接收器处的通路裕量是一种强制特性,其中,PCIe控制器从PHY接收器处获取裕量信息,同时工作在数据率为16GT/s的主动模式下(L0链路状态),不需要任何额外的外部硬件。使用通道裕度控制和错误通报特性,通过评估接收器的眼宽(时间)和眼高(信号幅度,电压),控制器能够确定系统中每一PCIe通道的裕量。这样,就能有效评估PCIE装置处的系统裕量,无需任何额外设置。

对于在PHY和控制器中实际实施的裕量特性,它与具体设计相关。在某些设计中,利用PHY中的数据和错误样本来评估信号眼图通报的信息,在其他设计中,可能会选择简单地通过将恰当的抖动量注入到数据中来对眼图进行加扰。对于由PHY提供的数据,控制器可能会以不同方式对这类数据进行裕量评估。对于不同级别的数据采集粒度,控制器可能会使用不同的偏差、电压和定时步骤。此外,在退出裕量评估之前,可能会设置不同的位容错限度。

在图3给出的示例中,对于错误扫描,通过在PHY中移动数据或错误样本的位置,可实现通路裕量。从接收器眼的样本位置开始,按增量步进,向左向右扫描眼宽,检查最低眼宽裕量。作为可选方式,能够从样本位置开始向上向下扫描眼高,检查最低眼高裕量。控制器使用来自PHY的裕量信息,识别系统中故障发生的位置,并确定通道裕量。图3给出了16GT/s PCIe 4.0处的接收器眼示例,它处于最佳位置,具有较大的信号裕量,超出最低眼宽和眼高。

 

 

图3:PCIe 4.0接收器信号眼示例

总结

当数据率从PCIe 3.0s 8GT/s翻倍到PCIe 4.0s 16GT/s时,性能变化和信号完整性降低变得更加显著。此外,PCB制造和环境变化也会增大信道损失,串扰和信道不连续,从而导致系统噪音增大、抖动性能变差和信号眼关闭。使用即将到来的PCI Express 4.0规范中提供的通路裕量特性,通过获取裕量信息,借助PCIe 4.0 PHY和控制器解决方案,能够帮助系统设计人员在设计和生产周期早期评估其设计的性能变化容差。这样,系统设计人员就能交付更健壮的系统,更好地满足其尽早推向市场的目标。

Synopsys的DesignWare PHY和控制器IP解决方案针对PCI Express 4.0技术,支持具有通路裕量特性的规范。请参见具有信道极限特性的Synopsys PCIe 4.0 IP,PCI-SIG Santa Clara 2016。

『本文转载自网络,版权归原作者所有,如有侵权请联系删除』

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭