当前位置:首页 > 工业控制 > 电子设计自动化
[导读]按键开关是电子设备实现人机对话的重要器件之一。由于大部分按键是机械触点,在触点闭合和断开时都会产生抖动。为避免抖动引起误动作造成系统的不稳定,就要求消除按键的抖动,确保按键每按一次只做一次响应。随着可

按键开关是电子设备实现人机对话的重要器件之一。由于大部分按键是机械触点,在触点闭合和断开时都会产生抖动。为避免抖动引起误动作造成系统的不稳定,就要求消除按键的抖动,确保按键每按一次只做一次响应。随着可编程逻辑器件的综合性能的不断提高,它已经象单片机一样。广泛应用在各种数字逻辑领域。用可编程逻辑器件直接获取键盘信息也得到广泛的应用。这里提出用VHDL语言编程的有限状态机的设计方法来实现按键的消抖,经仿真分析和下载实现,这种方法设计的消抖电路能够很好地实现电路功能,进行快速按键时都能保证每按一次做一次的响应,且性能稳定。

1 按键抖动产生原因分析

绝大多数按键都是机械式开关结构,由于机械式开关的核心部件为弹性金属簧片,因而在开关切换的瞬间会在接触点出现来回弹跳的现象。虽然只是进行了一次按键,结果在按键信号稳定的前后出现了多个脉冲,如图1所示。如果将这样的信号直接送给微处理器扫描采集的话,将可能把按键稳定前后出现的脉冲信号当作按键信号,这就出现人为的一次按键但微处理器以为多次按键现象。为了确保按键识别的准确性,在按键信号抖动的情况下不能进入状态输入,为此就必须对按键进行消抖处理,消除抖动时不稳定、随机的电压信号。机械式按键的抖动次数、抖动时间、抖动波形都是随机的。不同类型的按键其最长抖动时间也有差别,抖动时间的长短和按键的机械特性有关,一般为5~10 ms,但是,有些按键的抖动时间可达到20 ms,甚至更长。所以,在具体设计中要具体分析,根据实际情况来调整设计。


2 按键消抖电路的设计

按键消抖一般采用硬件和软件消抖两种方法。硬件消抖是利用电路滤波的原理实现,软件消抖是通过按键延时来实现。在微机系统中一般都采用软件延时的消抖方法。在用可编程逻辑器件FPGA/CPLD设计数字系统中,也可以用VHDL语言设计相应的时序和逻辑电路,对按键信号进行处理,同样可以达到消抖目的。本文利用Altera公司的可编程逻辑器件CPLD和QuartusⅡ,设计性能可靠的按键消抖电路。

2.1 按键消抖电路设计原理

按键消抖的关键是提取稳定的低电平(或高电平)状态,滤除按键稳定前后的抖动脉冲。在用基于VHDL语言的时序逻辑电路设计按键消抖电路时,可以用一个时钟脉冲信号对按键状态进行取样,当第一次采样到低电平时,启动延时电路,延时结束后,再对按键信号进行连续三次取样,如果三次取样都为低电平,则可以认为按键已经处在稳定状态,这时输出一个低电平的按键确认信号,如果连续三次的取样中,至少有一次是高电平,则认为按键仍处在抖动状态,此时不进行按键确认,按键输出信号为高电平。

2.2 按键消抖电路设计

该控制电路采用VHDL语言的有限状态机的设计方法来描述和实现,其状态转换图如图2所示。


电路的复位信号Reset有效时,电路进入复位状态S0,在S0状态下时钟信号CLK以一定的频率采样按键输入信号Key_in,如果采样到Key_in=‘1’则停留在S0状态,并继续采样按键输入信号的状态,一旦采样到输入信号是低电平,即Key_in=‘0’,则转入S1延时状态,进行消抖延时,当延时结束时Delay_end=‘1’,则转入在S2状态,在此状态下时钟信号CLK以一定频率采样按键输入Key_in的状态,如果采样到Key_in为高电平即Key_in=‘1’则转回状态S0,表示按键仍处在抖动状态,如果采样到Key_in=‘O’,则转入状态S3;状态S3,S4的转换过程和条件跟S2相同,在S4状态下,如果Key_in=‘0’则转入S5状态,当到达状态S5时.表示经过S2,S3,S4三个连续状态检测按键输入Key_in的状态都为‘0’,则认为按键处在稳定状态,并在S5输出按键确认信号Key_confirm=‘1’。同时在状态S5下时钟信号CLK检测按键输入状态,当检测到按键输入Key_in=‘0’,表示按键仍未释放,则停留在S5继续检测按键输入信号状态,如果检测到Key_in=‘1’,表示按键已经释放,则转回状态S0,等待下一次按键操作。

3 按键消抖电路的仿真分析

消抖电路的仿真图如图3所示。当复位信号Reset=‘0’时,状态机Key处在S0状态,同时以CLK的时钟频率采样按键输入信号Din的状态,当CLK第一次采样到Din为低电平时,此时可能发生了按键操作,随即状态机Key进入S1消抖延时状态,当延时结束时delay_end=‘1’(延时结束信号),跟接着状态机KEY的S2,S3,S4连续三个状态对按键输入信号Din进行采样,当三个状态下采样到Din信号都是低电平,则转入S5状态,并产生按键确认信号Key_confirm=‘1’,同时在S5状态下等待按键释放,在此状态下当CLK时钟信号检测到Din为高电平时转回状态S0。因按键释放瞬间也会发生抖动,所以由波形图可以看出,当按键释放瞬间由状态S5转回状态S0,在S0状态下,因按键抖动CLK时钟又检测到Din为低电平,随即转入S1进行消抖延时,经过S1的消抖延时后,按键已经稳定,Din为稳定的高电平,所以在状态S2检测到Din为高电平,则转入S0状态,到此时完成一次按键的操作,等待下一次按键操作,如果没有按键操作,即按键没按下,则一直保持在状态S0。


4 结 语

采用有限状态机方法设计按键消抖电路,再根据按键的特性设定合适的延时时间(一般10 ms)后,通过仿真分析及实验验证,能够起到很好的消抖效果,而且性能稳定,能确保每一次按键操作,产生一次按键确认,可广泛应用于可编程逻辑器件的键盘扫描设计中。



参考文献:

[1].CPLDdatasheethttp://www.dzsc.com/datasheet/CPLD_1136600.html.


来源:miaomi0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭