当前位置:首页 > 工业控制 > 电子设计自动化
[导读]周期〈Period)约束的对象是该时钟所驱动的所有同步元件之间的路径,但是不会覆盖如图1所示的A、B、C和D路径,以及输入引脚到输出引脚〈纯组合逻辑〉、输入引脚到闷步元件、同步元件到输出引脚,还有Clk1到Clk2之间的

周期〈Period)约束的对象是该时钟所驱动的所有同步元件之间的路径,但是不会覆盖如图1所示的A、B、C和D路径,以及输入引脚到输出引脚〈纯组合逻辑〉、输入引脚到闷步元件、同步元件到输出引脚,还有Clk1到Clk2之间的异步路径,

在进行周期Period约柬之前,需要对电路的时钟周期进行估计,不要便用过松或过紧的约束。设讨内部电路所能达到的最南运行频率取决于同步元件本身的建立保持时间,以及同步元件之间的逻辑和布线延迟。虽然布线延时无法估计,但逻辑延时应该可以大致估计,如图2所示。通常可以根据逻辑延时和布线延时各占40%和60%的比例来判断将要设置的周期约束对于当前的设计是否现实或合理。

周期约束所达到的范围图


图1 周期约束所达到的范围

估算逻辑之间的延时图

图2 估算逻辑之间的延时

通过约束编辑器的文本编辑窗口,可以采用以下两种方式的UCF语句来做时钟约束。

(1)period_item PERIOD=period{HIGH|LOW} [high_or low_item]
其中,period_item可以是NET或TIMEGRP,分别代表时钟线名称net name或元件分组名称group-name。用NET表示PERIOD约束作用到名为“net name”的时钟网线所驱动的同步元件上,用TIMEGRP表示PERIOD约束作用到TiMEGRP所定义的分组(包括FFS、LATCH和RAM等同步元件)上。period是目标时钟周期,单位可以是ps、ns、μS和ms等。HIGH|LOW指出时钟周期中的第1个脉冲是高电平还是低电平,high_or_low_time为HIGH LOW指定的脉冲的持续时间,默认单位是ns。如果没有该参数,时钟占空比是50%。例如, NET SYS_CLK PERIOD=10 ns HIGH 4ns

(2)NET“clock net name”TNM_NET=“timing group name”;
TIMESPEC“TSidentifier”=PERIOD “TNM reference”period {HIGH LOW} [high_or low_item]

下面举个例子来说明如何设置周期约束。考虑图3所示的电路设计范例1,输入时钟的周期是10ns,并且是上升沿动作,占空比为45%高电平,55%低电平。

我们可以用这样的UCF语旬来定义这个时钟:

NET“SysClk” TNM_NET =“SysClk”;
TIMESPEC “to ̄ SysClk ” = PERIOD "SysClk" 10 ns HIGH 45%;

周期约束设计范例图


图3 周期约束设计范例一

这个例子首先在时钟网线上附加了TNM_NET约束,把Clk驱动的所有同步元件定义成一个名为“sys_clk”的分组,然后使用TIMESPEC约束定义时钟周期。这种定义时钟周期的方法使用了标识符,在定义其他时钟周期时可以引用这个标识符,大大方便了派生时钟的定义。

一种特殊情况的周期约束是相关时钟。前面提到周期约束不会覆盖异步路径,如图1所示的D路径。但是如果两个时钟是“相关”的,则实现工具和时序分析工具会考虑这个路径。因此对这样的路径不需要再设置FROM TO约束,相关内容包括自动相关和人为相关。我们来分别看看几种情况。

(1)图4所示的相关时钟约束1为两个时钟来自于同一个DCM,我们只需对DCM的输入时钟执行周期约束,则DCM输出的两个时钟就会通过DCM自动关联,它们之间的路径就会自动地被分析。

相关时钟约束图

图4 相关时钟约束1

例如,我们做如下约束:

NET "CLKIN"TNW_NET = "CLKIN";

TIMESPEC "TS_CLKIX" = PERTOD "CLK△N"10.O ns HIGH 50%;

则两个时钟之间的路径就会被这样分析:

Slack:3.926ns
Source:DataRegSlow._d2_3 (FF)
Destination:DataRegFast_d3_3 (FF)
Requirement :5.OOOns 
Data Path Delay :0.874ns (Levels of Logic = 0)
Clock Path Skew:0.000ns
Source Clock: C=CLK1X rising at O.000ns
Destination Clock: CLKZX_DCM rising at 5.000ns
Clock Uncertainty : 0.200ns

(2)如刚才的电路可以不对DCM输入时钟做约束,而分别对两个时钟单独做周期约束,如图5所示。由于CLK2X的周期是基于CLK1X的周期定义的,所以这样两个时钟就被人为地关联起来,它们之间的路径也会自动地被分析。

相关时钟约束图

图5 相关时钟约束2

例如,我们做如下约束:
NET"CLKI1X"TNM_NET = "CLK1X";
NET"CLK2X"TNM_NET = "CLK2X";
TIMESPEC "TS_CLK1X" = PERIOD "CLK1X" lO.O ns HIGH 50%;
TIMESPEC "TS_CLK2X" = PERTOD "CLK2X" TS_CLX△CLK1X/2;

则其之间的路径就会被这样分析:
Slack:3.926ns
Destination :DataRegSlow_d2_3 (FF)
Requirement :DataRegSlow_d2_3 (FF)
Data Path Delay :0.874ns (Levels of Logic=0)
Clock Path Skew:0.0O0ns
Source Clock :CLK1X rising at O.000ns
Destination Clock:CLK2X rising at 5.000ns
Clock Uncertainty :0.200ns

(3)两个时钟都是从FPGA外面送进来的,如图6所示,也可以对它们单独设置的周期约束,但是CLK2X的周期是基于CLK1X的周期定义。通过这种方式可以把两个时钟人为关联起来,它们之间的路径也会自动地被分析。

相关时钟约束图

图6 相关时钟约束3

例如,我们做如下约束:
NET "CLK1X" TNM NET = "CLK1X";
NET "CLK2X" TNM NET = "CLK2X";
TIMESPEC "TS_CLK1X" = PERTOD "CLK1X"10.O ns HIGH 50%;
TIMESPEC "TS_CLK2X" = PERTOD "CLK2X" TS_CLK1x/2;
则两个时钟之间的路径就会被这样分析:

Slack: 3.926ns
Source: DataRegSlow_d2_3 (FF)
Destination:DataRegFast_d2_3 (FF)
Requirement:5.OOOns
Data Path Delay: 0.874ns (Levels of Logic =0)0.OOOns
Clock Path Skew: 0.0OOns
source clock:CLK1X rising at 0.000ns
Destination Clock: CLK2X rising at 5.000ns
Clock Uncertainty:0.200ns

(4)两个时钟都是从FPGA外面送进来的,而且还有特定的相位关系。这种情况也可以单独做周期约束,但是CLK2X的周期是基于CLK1X的周期定义,同时需要再加上相位关系。通过这种方式可以把两个时钟人为地关联起来,它们之间的路径也会自动地被分析,如图7所示。

相关时钟约束图

图7 相关时钟约束4

例如,我们做如下约束:
NET "ClklX" TNM_NET = "ClklX"
NET "Clk2X180" TNM_NET = "Clk2X180";
TIMESPEC "TS_Clk1X" = PERIOD "ClklX"10.0ns;
TIMESPEC "TS_Clk2X180" =PERTOD "Clk2X180" TS_ClklX/2 PHASE+2.5 nS:
则该路径会被按照2.5 ns来分析。

在ISE的语言模版中有UCF的语法模板可供用户参考,如图8所示。

约束设置UCF模板示意图



图8 约束设置UCF模板示意



来源:ks991次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为解决使用现有接装纸分离装置生产“视窗烟支”时出现的安装调整难度大、耗时长、稳定性差,烟支接装纸外观质量缺陷率高等问题,设计了一种接装纸三级分离和控制装置。通过接装纸初步分离、分离定位控制和最终定位输送装置模块化设计,且...

关键字: 视窗烟支 接装纸 分离 控制

构建了机载电源特性测试系统 , 包括硬件平台和软件平台:硬件平台用于产生电源特性测试所需激励信号 , 软件 平台实现电源特性测试架构的 自动切换和电源特性的数据采集;硬件平台由APS15000线性功放 、LVA2500线...

关键字: 电源特性测试 测试切换 数据采集 自动控制

作为业内持续专注于物联网(IoT)芯片开发的厂商,Silicon Labs(芯科科技)自2021年剥离基础设施与汽车(I&A)业务后,全力聚焦物联网领域。而随着物联网迈向全场景无缝连接与人工智能(AI)端侧赋能的新阶段,...

关键字: 芯科科技 IoT BLE AoA Sub-G AI

永磁同步电机具有高效节能 、低噪声 、高功率密度等显著优点 ,特别适用于新能源电动汽车行业 。针对城市用轻型 低速电动汽车的应用 , 分析了一款内置式永磁同步电机的设计方法及特点 , 对汽车驱动电机的基本性能及设计策略进...

关键字: 永磁同步电机 新能源汽车 有限元计算 电机设计 内置式

介绍了“W ”型锅炉的燃烧特性 ,深度调峰过程中常见的问题及风险点 。结合某电厂630 MW超临界机组在200 MW负 荷深度调峰过程中给煤机断煤引起的燃烧恶化工况 ,对燃烧恶化后的现象 、处理过程及原因进行了全面分...

关键字: “W”型锅炉 深度调峰 燃烧恶化 稳燃措施

在地铁供电系统中 ,直流牵引系统故障可能会导致地铁列车失电 ,对运营服务造成严重影响 。地铁出入场(段)线 的部分直流牵引供电设备处于露天环境 , 与正线隧道内较为封闭的环境相比 , 易因外部环境影响 ,导致设备故障 。...

关键字: 出入段线 牵引直流开关 电流变化率保护 跳闸

在现代电力系统中 , 无论是大电流 、高电压 、快速运行的电源开关系统 , 还是高速电机的驱动系统 , 电磁干扰的传 播一直是系统设计的难点 。鉴于此 ,介绍了通过控制高速开关核心模块PWM(脉宽调制)的展频方式来减少E...

关键字: 电磁干扰(EMI) 脉宽调制(PWM) 展频

水厂作为城市供水系统的重要组成部分 , 其电气设计的合理性和高效性直接关系到整个供水系统的稳定性和经 济性 。鉴于此 ,从供配电系统 、设备选型 、电缆敷设 、节能措施及智慧化平台等五个维度 , 结合现行规范与工程实践...

关键字: 水厂 电气设计 供配电系统 智慧化平台

由于负载的特殊性和运行条件的复杂性 ,海上油气平台的电气系统功率因数普遍较低 。这种低功率因数会对电力 系统造成一系列负面影响 , 包括电能损耗增加 、设备运行效率降低及对平台电力系统的冲击 。鉴于此 , 结合具体项目案...

关键字: 油气平台 静止无功发生器(SVG) 功率因数 无功补偿 改造案例

在电子制造领域,DFM(Design for Manufacturability,可制造性设计)作为连接研发与量产的桥梁,通过在设计阶段预判制造风险,已成为提升产品良率、降低成本的核心工具。以手机摄像头模组封装工艺为例,...

关键字: DFM BSOB
关闭