当前位置:首页 > 工业控制 > 电子设计自动化
[导读]卷积交织和解交织原理简介在DVB-C系统当中,实际信道中的突发错误往往是由脉冲干扰、多径衰落引起的,在统计上是相关的,所以一旦出现不能纠正的错误时,这种错误将连续存在。因此在DVB-C系统里,采用了卷积交织来解

卷积交织和解交织原理简介

在DVB-C系统当中,实际信道中的突发错误往往是由脉冲干扰、多径衰落引起的,在统计上是相关的,所以一旦出现不能纠正的错误时,这种错误将连续存在。因此在DVB-C系统里,采用了卷积交织来解决这种问题。它以一定规律扰乱源符号数据的时间顺序,使其相关性减弱,然后将其送入信道,解交织器按相反规律恢复出源符号数据。

DVB-C的卷积交织和解交织原理为:交织由I=12(I为交织深度)个分支构成。每个分支的延时逐渐递增,递增的单元数M=n/I=204/12=17(M为交织基数)。这里的数据单位为字节。0支路无延时,1支路延时17个符号周期,11支路则延时l7×11个符号周期。输入端有一开关随着时间推移依次连接各个延时支路,输出端有一开关与输入端一一对应,同步连接各延时支路。

解交织器的实现

解交织器的FPGA实现原理

本文采用RAM分区循环移位法来实现,因为RAM里面暂存一位数据,只需要用一个逻辑门大小的资源,比基本寄存器暂存一位数据需要12个逻辑门大小的资源要优化很多。用RAM分区循环移位法来实现解交织器,就是把RAM分成11个区。每个区的大小为(单位为字节):

Ni=M*(I-i-1)(i=0,1,2, …,(I-1))
这里i为RAM所分区的区号。

因为11支路不需要延时,所以 RAM的11分区大小即N11为0。本文在RAM前面设置一个地址控制器,这是解交织器关键的一步。RAM每区有一个首地址和区内偏移地址,分别用一个寄存器来存储。在地址控制器里产生每区的首地址和区内偏移地址,从而进一步产生RAM的读写地址。

解交织器的FPGA实现

把解交织器的深度I和基数M设成参数,以增强程序的通用性。如果以后设计的解交织器的系数I和M需要改动,只要把参数值重新设置一下就可以了,不需要改动程序。由前面的计算可知,解交织器总共需要延时的比特数,也就是RAM的大小应该为8976比特。

可以用下面一段程序实现首地址的初始化:
FirstAddr[0]=0;
for(i=1;i<(I-1);i=i+1)
FirstAddr[i]=(I-i)*M+FirstAddr[i-1];

也就是说0~11支路的首地址在RAM中分别为0,187,357,510,646,765,867,952,1020,1071,1105。

RAM每区的字节数可以由参数来表示,即为(I-i-1)*M,i为分支号。

每区内偏移地址SectAddr[i]初始化为0,每写入一个数据,递增1并与由参数表示的每区的字节数进行比较,若两数相等,则SectAddr[i]重新设为零,保证区内偏移地址在每区内循环移动。

由上可知,RAM每区的读写地址为:FirstAddr[i]+SectAddr[i](i为RAM分区号)

图1所示的就是由Altera MegaWizard工具配置的双口RAM。RAM每区的读写地址相同,也就是先读出给定地址单元的数据后,再写入新的数据。这里要同时发生读写操作,所以要使用双口RAM。每隔一个时钟周期,RAM读写指针就跳到下一个RAM区,这样读写指针在RAM的11个区循环移动,实现解交织。

图1 解交织器的实现框图

图1 解交织器的实现框图

图2为解交织器在Mentor公司的Modelsim SE环境下的逻辑仿真图。Clk为时钟信号,Reset为异步复位信号,ClkEn为时钟使能信号,高电平有效,FrameFirstIn为帧同步信号,高电平有效。DeinterleaverIn为输入数据。设计时要注意数据同步问题,要不然会造成数据错位,导致设计的失败。DeinterleaverIn为了在selector模块输入时和RAM的输出数据q保持同步,要作相应的延时,同步延时后DataIn4,同理,对应地RAM的输入数据DataIn1,selector模块的使能信号ClkEn4等也是经过同步处理得到。Flag为selector模块的选择控制信号,当Flag信号为0~10时,选择RAM的输出数据q作为输出,而当Flag=11时,则选择DeinterleaverIn经过同步处理后的数据DataIn4作为输出,从而保证在解交织器的11支路实现无延时输出。在解交织器的最前面输出的字节有些是无效的,加一个DataEffect模块是为了等全部字节都有效时,才把FrameFirstOut信号置高,告诉后面的模块数据开始全部有效。

解交织器的Modelsim仿真图

图2 解交织器的Modelsim仿真图

从资源利用方面考虑,使用RAM分区循环移位法来实现DVB-C解交织器比全部用基本寄存器或用配置FIFO的方法来实现要优化得多。

为了更好地验证,本文把设计在synopsys 公司的synplifypro软件环境下进行综合,选用Altera公司的Cyclone EP1C12Q240C8器件。因为使用了软核IP,所以再把生成的*.vqm文件导入synopsys公司的QuartusII 软件进行再综合,选择同样的器件类型和型号,结果说明采用双口RAM设计所使用的逻辑单元较少,而且使用的8976比特RAM资源占用了Cyclone器件中的3个M4K,只有全部存储资源的3%。

结语

虽然采用卷积交织会在刚开始传输数据的时候输出一些无效数据,在系统中引入一定的延时,但是它能把突发干扰造成的突发错误分散成随机错误,利于RS纠错,这样一权衡,有延时也是很值得的。本文利用EDA工具完成解交织器的设计,并且采用Verilog和原理图协同输入的设计方法,大大提高了设计效率。这里设计的解交织器具有通用性,如果要用不同深度I和基数M的解交织器,只要重设程序里的参数值就可以了,非常方便。



来源:零八我的爱0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为解决使用现有接装纸分离装置生产“视窗烟支”时出现的安装调整难度大、耗时长、稳定性差,烟支接装纸外观质量缺陷率高等问题,设计了一种接装纸三级分离和控制装置。通过接装纸初步分离、分离定位控制和最终定位输送装置模块化设计,且...

关键字: 视窗烟支 接装纸 分离 控制

构建了机载电源特性测试系统 , 包括硬件平台和软件平台:硬件平台用于产生电源特性测试所需激励信号 , 软件 平台实现电源特性测试架构的 自动切换和电源特性的数据采集;硬件平台由APS15000线性功放 、LVA2500线...

关键字: 电源特性测试 测试切换 数据采集 自动控制

作为业内持续专注于物联网(IoT)芯片开发的厂商,Silicon Labs(芯科科技)自2021年剥离基础设施与汽车(I&A)业务后,全力聚焦物联网领域。而随着物联网迈向全场景无缝连接与人工智能(AI)端侧赋能的新阶段,...

关键字: 芯科科技 IoT BLE AoA Sub-G AI

永磁同步电机具有高效节能 、低噪声 、高功率密度等显著优点 ,特别适用于新能源电动汽车行业 。针对城市用轻型 低速电动汽车的应用 , 分析了一款内置式永磁同步电机的设计方法及特点 , 对汽车驱动电机的基本性能及设计策略进...

关键字: 永磁同步电机 新能源汽车 有限元计算 电机设计 内置式

介绍了“W ”型锅炉的燃烧特性 ,深度调峰过程中常见的问题及风险点 。结合某电厂630 MW超临界机组在200 MW负 荷深度调峰过程中给煤机断煤引起的燃烧恶化工况 ,对燃烧恶化后的现象 、处理过程及原因进行了全面分...

关键字: “W”型锅炉 深度调峰 燃烧恶化 稳燃措施

在地铁供电系统中 ,直流牵引系统故障可能会导致地铁列车失电 ,对运营服务造成严重影响 。地铁出入场(段)线 的部分直流牵引供电设备处于露天环境 , 与正线隧道内较为封闭的环境相比 , 易因外部环境影响 ,导致设备故障 。...

关键字: 出入段线 牵引直流开关 电流变化率保护 跳闸

在现代电力系统中 , 无论是大电流 、高电压 、快速运行的电源开关系统 , 还是高速电机的驱动系统 , 电磁干扰的传 播一直是系统设计的难点 。鉴于此 ,介绍了通过控制高速开关核心模块PWM(脉宽调制)的展频方式来减少E...

关键字: 电磁干扰(EMI) 脉宽调制(PWM) 展频

水厂作为城市供水系统的重要组成部分 , 其电气设计的合理性和高效性直接关系到整个供水系统的稳定性和经 济性 。鉴于此 ,从供配电系统 、设备选型 、电缆敷设 、节能措施及智慧化平台等五个维度 , 结合现行规范与工程实践...

关键字: 水厂 电气设计 供配电系统 智慧化平台

由于负载的特殊性和运行条件的复杂性 ,海上油气平台的电气系统功率因数普遍较低 。这种低功率因数会对电力 系统造成一系列负面影响 , 包括电能损耗增加 、设备运行效率降低及对平台电力系统的冲击 。鉴于此 , 结合具体项目案...

关键字: 油气平台 静止无功发生器(SVG) 功率因数 无功补偿 改造案例

在电子制造领域,DFM(Design for Manufacturability,可制造性设计)作为连接研发与量产的桥梁,通过在设计阶段预判制造风险,已成为提升产品良率、降低成本的核心工具。以手机摄像头模组封装工艺为例,...

关键字: DFM BSOB
关闭