当前位置:首页 > 工业控制 > 电子设计自动化
[导读]2.2 介质板与第二层孔缝之间的距离对屏蔽效能的影响 介质板尺寸不变为300 mm×120 mm×1 mm.内层孔到加载PCB 板的距离q 变化。在这里q 分别取50 mm,100 mm 和290 mm,最后和没有PCB 板的情况做对比。 由图5 可知,在

2.2 介质板与第二层孔缝之间的距离对屏蔽效能的影响

介质板尺寸不变为300 mm×120 mm×1 mm.内层孔到加载PCB 板的距离q 变化。在这里q 分别取50 mm,100 mm 和290 mm,最后和没有PCB 板的情况做对比。

由图5 可知,在给定频率范围内,介质板离第二层孔缝越远,屏蔽效能越低。当介质板离第二层孔缝50 mm的时候,大部分耦合场发生反射,耦合出腔体,因此第二层腔体中心场强是最小的,屏蔽效能是最大的,随着距离的增大,腔体中心场强也逐渐增大,当增加到290 mm的时候,腔体中心场强达到最大值,与无介质板时的场强接近,屏蔽效能也与无介质板时接近。

2.3 介质板数量对屏蔽效能的影响

介质板大小均为300 mm×120 mm×1 mm,当只有一块介质板的时候,放置在距第二层孔缝100 mm 的地方,即图1 中q=100 mm 的地方;当有两块介质板的时候,放置在距离第二层孔缝50 mm 和100 mm 的地方,即图1 中q=50 mm 和q=100 mm 的地方,当有三块介质板的时候,放置在距离第二层孔缝50 mm,100 mm 和150 mm 的地方,即图1 中q=50 mm,q=100 mm 和q=150 mm的地方。仿真结果如图6所示。

由图6 可以看出,随着介质板数量的增加,腔体中心位置的屏蔽效能有所增加。

2.4 介质板不同放置方式对屏蔽效能的影响

介质板大小不变,以下面三种不同的方式放置:与第二层孔缝平行,放置在距离地二层孔缝100 mm的位置;与侧面平行,放置在垂直于孔缝长边中央的位置;与地面平行,放置在垂直于孔缝短边中央的位置。三种放置方式如图7所示。

三种情况仿真结果如图8所示。

由图8可知,介质板平行与地面放置时屏蔽效能最差,其他两种放置方式对屏蔽效能影响不大。

3 加载集成运算放大电路板对屏蔽效能的影响

实际的印制电路板和等效的宏观介质板还是存在一定的差异,在这里,将宏观介质板替换为集成运算放大电路板,如图9所示。

对比介质板和电路板在屏蔽腔中对屏蔽效能的影响,设置介质板大小与电路板相同,均为75.59 mm×25.69 mm×0.711 2 mm,均将模型放置在屏蔽腔后腔中心距z 轴原点-99.288 8 mm 的位置,此处介质板为前面提到的电导率为σ = 0.22 S - m-1 介电常数为εr = 2.65 的宏观介质板,印制电路板采用图9所示的加载集成运算放大电路的电路板。运用CST,将电路板的PCB模型导入到CST的微波工作室中,经过仿真后,其结果如图10所示。

由图10 可知,在大小、厚度、放置位置相同的情况下,宏观介质板和印制电路板得到的屏蔽效能相差不大,即用宏观介质板等效替代印制电路板误差较小。

加载印制电路板后腔体屏蔽效能主要表现在电路板表面电场强度的变化和表面电流的不同,通过CST仿真,得到下述结果。

3.1 电路板表面电场

从由图11 和图12 可知,无屏蔽时最大场强为11.070 7 V·m-1 ,有屏蔽时最大场强为0.164 V·m-1 ,可见屏蔽腔对电路板起到了良好的屏蔽效果。并且相隔较近的导线之间容易引起高场强,如果没有屏蔽,将会引起电路板的正常工作,严重时引起损坏。

3.2 电路板表面电流

在图13 中,无屏蔽时电路板表面电流最大值为0.014 93 A·m-1 ,图14中,有屏蔽时电路板表面电流最大值为2.091 8e - 005 A·m-1 ,明显比无屏蔽时减小许多,说明屏蔽腔对电路板起到了良好的屏蔽效果。

4 结语

本文用传输线等效模型推出双层加载电路板矩形腔体屏蔽效能的计算公式,通过仿真验证了公式的正确性,并得出结论:在给定频率范围内,介质板越大,腔体屏蔽效能越高;介质板离第二层孔缝越近,屏蔽效能越高;介质板数量越多,屏蔽效能越高;介质板平行与地面放置时屏蔽效能最差,其他两种放置方式对屏蔽效能影响差别不大。通过以上结论,在设计机壳时,可以通过对内部电路板的合理布局提高系统的屏蔽效能,同时,腔体内电路的响应频率应当避开腔体的谐振频率。在本文中,为了更加贴合实际应用,将等效介质板替换为加载集成运算放大电路的印制电路板模型,通过CST仿真,验证了宏观介质板等效代替印制电路板的有效性和相似性,并且验证了屏蔽腔体对内部电路板良好的屏蔽效果以及屏蔽腔体对电路板功能的影响。(作者:杨楠)

0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭