当前位置:首页 > 工业控制 > 电子设计自动化
[导读]在前面中介绍了信号完整性分析所采用的工具,其中之一是建模。在这里就要利用这个分析工具,首先为传输线建立模型,然后分析它的各种行为特征。传输线的零阶模型是最简单且最易理解的模型,如图1所示。它是由一排微型

在前面中介绍了信号完整性分析所采用的工具,其中之一是建模。在这里就要利用这个分析工具,首先为传输线建立模型,然后分析它的各种行为特征。

传输线的零阶模型是最简单且最易理解的模型,如图1所示。它是由一排微型电容并联组成,数值上等于传输线每一单位长度的电容量。

图1 传输线的零阶模型

下面介绍如何用传输线的零阶模型来分析传输线的电压-电流(V-I)特性和瞬态阻抗。

设单位长度为△X,每个微型电容的大小就是传输线单位长度的电容量气与单位长度的乘积:

C=Co×△X (3-5)

电流I由注入到每个电容上的电量Q决定,注入电容的电量Q等于电容C乘以其两端的电压V。电量注入到每个微型电容的时间间隔为△t,等于单位长度△X除以信号的传播速度υ。可以用下面的式子表示电流I:

可以看到,导线上的电流仅与单位长度的电容量、信号的传播速度和电压有关。传输线的电压-电流(V-I)特性:传输线上任何=处的瞬时电流与电压成正比。

得到传输线的电流后,可以推导出信号受到的瞬态阻抗,根据欧姆定律

实际计算中υ取材料中的光速带入上式可得

由上式可知,传输线的瞬态阻抗只由传输线的横截面积和材料特性即介电常数共同决定,单位是Ω。

例:若介电常数为9,单位长度电容气为4.98 pF/in,那么传输线的瞬态阻抗为

如果传输线的以上两个特性参数保持不变,无论传输线的长度如何变化,瞬态阻抗始终是一个定值。

零阶模型把传输线描述成-系列间隔一定距离的微型电容的集合,这仅是传输线的物理模型,为了得到其等效的电气模型,接下来介绍传输线的一阶模型。

一阶模型是建立在零阶模型的基础之上,把传输线的两条导线的每一小段用电感代替,每两个并联的微型电容由电感连接,共同组成了一个微段,如图2所示。

图2 传输线的一阶模型

经典的传输线分析理论的基本思想是:均匀传输线的各电路参数均匀地分布于传输线上,因而传输线上的电压不仅是时间t的函数,而且是空间坐标x的函数,即

在距离始端x处取长度为曲的微段来研究,当dx足够小时可以忽略该段上电路参数的分布性,用集中参数电路来等效代替,这样,整个均匀传输线可以视为由一系列这样的微段级联而成。由于牵涉到微分方程,从实用的角度出发,在这里就不作介绍了,读者可以参考相关传输线理论的文献。

为了简化对一阶模型的分析,假设电容和电感无穷小;LC电路的节数趋于无穷;单位长度电容Co和单位长度电感Lo都为常数;传输线的总长为ι;那么总的电容和电感分别为

C=Co×ι (3-11)

L=Lo×ι (3-12)

由特征阻抗Zo和速度v推导单位长度电容和单位长度电感如下

传输线时延和特征阻抗推导总电容和总电感如下

由网络理论可知,信号沿网络传输时,在每一节点上都受到了恒定的瞬态阻抗,并且信号经输入网络到输出网络会存在一定的时延。式(3-13)和式(3-14)就能支持这一结论的成立。

为了避免烦琐的理论和微分方程推导,再给出一些关于一阶模型的实用计算公式,便于读者今后查阅。

以上介绍的这些关系式适用于所有的传输线,并且与其几何形状无关。如果知道其中的两个,就可以求出其余所有的参数,非常便捷实用。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭