当前位置:首页 > 单片机 > 单片机
[导读]1概述近年来,具有完整的测量或控制功能的智能模块不断涌现,而此类模块均需通过RS-232S或RS-485串行口与上位单片机或微机进行通信,以构成分级分布式测控系统,而现阶段的大部分单片机仅有一个UART串口,很难满足既

1概述

近年来,具有完整的测量或控制功能的智能模块不断涌现,而此类模块均需通过RS-232S或RS-485串行口与上位单片机或微机进行通信,以构成分级分布式测控系统,而现阶段的大部分单片机仅有一个UART串口,很难满足既与智能模块通信又与上位微机进行通信的要求。纵观现有的串口扩展方案,存在对单片机的软硬件资源占用较多、编程繁复、串口扩展数量较少、硬件电路复杂及成本较高等缺点,而利用UART多串口扩展器SP2337可以很好地解决单片机多串口的扩展问题。

2SP2337的主要特性及引脚功能

SP2337是采用低功耗CMOS工艺设计的UART多串口扩展器,该器件可将一个高波特率的UART串口扩展为三个较高波特率的UART串口,从而为系统需要多个串口时提供很好的解决方案,该器件的主要特性是:
 
       可将一个UART串口扩展为三个UART串口;
  全双工异步工作,四个UART串口都为全双工异步工作模式;
  工作速率高,可达1200b/s~9600b/s(可由晶振频率设定任意非标准波特率);
  波特率设置简单,只需更改输入时钟频率;
  波特率误差小,每个串口的数据输出波特率误差小于0.25%;
  接收波特率范围宽,要求每个串口数据波特率小于2.5%;
  数据传输误码率极低,小于10-9(接收的数据波特率误差小于2%);
  具有节电模式,进入节电模式后,典型静态电流为0.5μA;
       可自动唤醒,任意串口的接收端有数据出现时自动唤醒;
  宽工作电源电压(2.4V~5.5V);
  低工作电流,典型工作电流为4.4mA。

该器件具有DIP型、SOIC型和SSOP型多种封装形式。引脚排列如图1所示。引脚功能见表1。

3应用技术

在使用SP2337时应遵循许多原则。

SP2337适用于串行数据为7位的应用领域。

串口0—串口2为三个较高波特率的串口(子串口)。

串口3为高波特率串口(母串口),它的数据传输速率是子串口的4倍。如当输入时钟频率fos,cin为10MHz,串口3的波特率为19200b/s。串口0—2的波特率为19200b/s/4=4800b/s;如果需要在串口0—串口2上获得波特率K,则需按以下公式改变时钟频率。

ADRI1、ADRI0为下行地址线,ADRI1ADRI0=00、01、10时,分别对应子串口0,1,2,ADR1ADR0=11时为串口3的地址,同时,它也是SP2337的命令/数据口地址。

ADRO1、ADRO0为上行数据的串口地址线,ADRO1ADRO0=00、01、10时分别对应子串口0、1、2,当上位机的UART接收到由串口3发送的数据时,立即读取地址线ADRO1和ADRO0的状态,根据ADRO1和ADRO0的状态判断数据由哪个串口发送。

唤醒条件为向串口0—串口3的任意一个数据接收端口写入一个字节数据。由于SP2337的唤醒时间为25ms左右,故用于芯片唤醒的数据将不能够被正确接收,因此,应采用下面的芯片唤醒流程:先发送一个字节数据,用于唤醒芯片,延时25ms后再发送有效的数据。

为了快速可靠地传输批量数据,可以采用下面的方法实现数据快速可靠接收、发送。

如上位机只需要向一个串口发送数据,则可向该串口发送完一个字节数据,再向地址11(串口3的地址)连续发送四个字节“0X00”,其后再向需要发送数据的串口发送一个字节数据。再向串口3发送四个字节“0X00”,按此方式循环发送即可。

如果上位机需向两个串口分别发送两个数据块,则可分别向两个相应的子串口发送一个字节的数据后再向串口3发送四个字节的“0X00”,再分别将两个数据块的下一个字节发送到两个子串口。

如果上位机有三个数据块需要分别向三个子串口发送,则可先向三个子串口分别发送一个字节的有效数据,再向串口3发送两个字节的“0X00”,再循环向3个子串口发送有效的数据。

注意写入串口3用于延时的数据只能是“0X00”,如果写入其他数据,将产生不可预料的结果。

SP2337数据发送过程如下:如果上位机需要将数据“0X28”由串口2发送出去,则需先将ADRI1置为“1”,ADRI0置为“0”,再将数据“0X28”通过上位机的UART口发送到串口3。

SP2337可执行的命令仅有两条即复位和睡眠命令。当上位机通过串口3(地址为“11”)写入数据“0X35”或“0XB5”时,则芯片执行软件复位,复位时间约为21.75ms,当写入的数据为“0X55”或“0XD5”时,则芯片进入睡眠状态。

4具体应用

利用SP2337可将仅具有一个UART串口的单片机扩展为具有3个UART串口的单片机。下面以常用的AT89C51单片机为例给出相应的串口扩展电路,如图2所示。

图2中,AT89C51的UART口与SP2337的串口3相连。串口3同时也作为命令/数据口。ADRI1和ADRI0与AT89C51的P2.3、P2.2口线相连,用于发送数据时相应串口0—2的选择,ADRO1和ADRO0与AT89C51的P2.1、P2.0口线相连,用于判别接收的数据来自串口0—2的哪一个。SP2337的时钟频率选为20MHz,此时,串口3的波特率为19200b/s,串口0—2的波特率为9600b/s。下面给出与上述电路配套的通信程序。程序采用C51编制。

#include <regh1.h>




5结束语

SP2337多串口扩展器可广泛应用在工业控制、数据采集、仪器仪表、智能家电、计算机RS232口扩展、有线及无线数据传输等领域,由该器件构成的多串口电路具有硬件成本低、性价比高、工作速度高、波特率设置简单等特点,是多串口应用系统的良好解决方案。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭