当前位置:首页 > 单片机 > 单片机
[导读]传导发射是电磁兼容设计中的重要问题之一。为了满足标准中对传导发射限制的要求,通常使用EMI滤波器来抑制电子产品产生的传导噪声。快速选择或者设计一个满足需要的滤波器是解决问题的关键。传导噪声分析技术包括共模

传导发射是电磁兼容设计中的重要问题之一。为了满足标准中对传导发射限制的要求,通常使用EMI滤波器来抑制电子产品产生的传导噪声。快速选择或者设计一个满足需要的滤波器是解决问题的关键。传导噪声分析技术包括共模噪声、差模噪声分析,共模阻抗、差模阻抗分析,这是滤波器设计的基础。

共模噪声和差模噪声

传导噪声根据传输特性产生分成两类:差模噪声和共模噪声。差模噪声是当两条电源线的电流方向互为相反时发生的,而共模噪声是当所有电源线的电流方向相同时发生的,如图1所示。一般而言,共模是最大难题,这是由杂散电容的不当接地造成的。

 

 

图1 共模噪声和差模噪声

如果存在不等值的负载或线路阻抗,就会将共模电流转换成部分共模电流和部分差模电流。当电源系统给电路供电时,如果电路具有不等值的阻抗,而且电源的输出存在共模噪声时,共模噪声将差动方式作用于电路,电路可能会发生错误。所以,在产生共模电流时,就要首先降低共模噪声,其次是均衡阻抗。此外,由于共模和差模的特性,共模电流的频率会比差模的频率大。因此,共模电流会产生很大的射频辐射,而且会和邻近的组件和电路发生感性与容性的耦合。在实际电源电路里,差模噪声很像是一个电压源,共模噪声比较像一个电流源,这使得共模噪声更难被消除。共模噪声和所有的电流源一样,需要有一个流动路径存在。因为它的路径包含底盘,所以外壳可能会变成一个大型的高频天线。

共模噪声和差模噪声分析

在电磁兼容实验室,人们借助LISN和接收机完成传导发射的测试,测试结果将给出电源线上的总噪声特性。

图2是使用LISN测试电源噪声的示意图,由于LISN输出使用标准50Ω阻抗。因此两路LISN分别得到噪声电压:

 

 

图2 LISN测试示意图

VL=25xIcm+50xIdm

VN=25xIcm-50xIdm

使用标准LISN无法分离共模和差模噪声,但是借助某些特殊装置可以做到。如:LISN UP、CM/DM分离器、ESA2000和PREMIPRO都可以完成噪声分离任务。图3给出了CM/DM分离器原理图,它是一种以变压器为基础的装置,利用共模电压无法使变压器工作的原理。

 

 

图3 CM/DM分离器原理图

至此已经了解了产品的传导发射是否满足标准要求,并且分析出差模噪声和共模噪声的特性(见图4 (a)和图4 (b))。后续的工作就是选择或者设计一个滤波器来解决传导发射问题。

 

 

图4 (a) 总噪声和差模噪声 图4 (b) 总噪声和共模噪声

电源输入阻抗特性分析

滤波器的制造商给出的滤波器插损是在50Ω标准阻抗系统中的性能。众所周知电源的输入阻抗随着频率的变化具有不连续性,而随着阻抗的改变滤波器的插损特性也具有很大的变化,100?H电感和100nF电容器在理想情况下带来的衰减分别如图5(a)和图5(b)所示。

 

 

图5(a) 100?H电感(理想的)的衰减 图5(b) 100nF电容器(理想的)的衰减

为了充分发挥滤波器的性能,在选择或者设计滤波器之前,需要对电源端口的输入阻抗进行分析,这包括共模阻抗、差模阻抗,共模噪声相位角、差模噪声相位角。阻抗测试可以借助专用的阻抗测试仪或者传导分析仪。

电源滤波器

通常有四种技术来进行电源滤波,以便遏制干扰噪声。在实际使用中混合其中的两种,甚至更多。它们是:

正负极电源线之间添加电容,叫X电容。

每根电源线和地线之间添加电容,叫Y电容。

共模遏制(两根电源线上的遏制线圈同向绕线)。

差模遏制(每根电源线有它自己的遏制线圈)。

使用滤波器测试模板可以分别说明各个元件的滤波作用。滤波器模型如图6所示。分析结果见图7、8、9、10所示。

 

 

图6 电源滤波器模型

 

 

图7 (a) 仅使用100?F差模电容前后的差模噪声 图7 (b) 仅使用100?F差模电容前后的共模噪声

 

 

图8 (a) 仅使用0.01?F共模电容前后的差模噪声 图8 (b) 仅使用0.01?F共模电容前后的共模噪声

 

 

图9 (a) 增加227μH差模电感前后的差模噪声 图9 (b) 增加227μH差模电感前后的差模噪声

 

 

图10 (a) 使用完整滤波前后的差模噪声 图10 (b) 使用完整滤波前后的共模噪声

解决方案

传导噪声分析中的共模噪声、差模噪声分析,共模阻抗、差模阻抗分析,以及噪声相位角的测试都是在为最终的解决方案做准备。电子产品满足传导发射的限制要求,最终是通过电源滤波器来实现的。但是如何根据上述分析结果快速并准确地确定滤波器中的参数,却并不是一项简单的工作。使用特制的滤波器设计软件,可以将测试数据导入专用软件中,可帮助工程师快速得到针对该产品的定制滤波器。应用方案如图11。

 

 

图11 自动滤波器设计

结束语

通常对传导发射的限制是针对电源线输入端,并不包括电源的输出端。本文所介绍的噪声分析方法可以借鉴电源输出端的共模噪声和差模噪声测试,如使用两个电流探头和CM/DM分离器(或LISN UP)就可以快速诊断电源输出端共模噪声。如果要求不高,也可采用倒置的LISN和CM/DM分离器来测试电源输出端的共模噪声。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭