当前位置:首页 > 单片机 > 单片机
[导读]很多时候,一个电压不仅仅需要定性(高电平或者低电平),而且要定量(了解具体电压的数值)。这个时候就可以用到模数转换器(ADC)了。这次的内容是测量开发板搭载的滑动变阻器(VR1)的电压,然后把ADC转换的结果通

很多时候,一个电压不仅仅需要定性(高电平或者低电平),而且要定量(了解具体电压的数值)。这个时候就可以用到模数转换器(ADC)了。这次的内容是测量开发板搭载的滑动变阻器(VR1)的电压,然后把ADC转换的结果通过UART打印出来。同时,也简单介绍了校准的方法。

SAM4E芯片中,ADC是由AFEC管理的。同时,AFEC可以使用一个多路复用器以选择需要转换的信号的通道,也可以通过平均多次ADC转换的结果以提高转换精确度。

一、电路图

通过顺时针方向旋转该变阻器,PB1引脚电压将变大,其电压变化范围为0—3.3V。使用的AFEC为AFEC0,通道编号为5。

通过JP3可以选择参考电压的大小。默认情况下,参考电压为3.3 V。

需要注意的是,而在JP3短接2、3脚时,参考电压为3.0 V。

二、ADC电气特性

该AFEC有效的时钟范围为1—20 MHz,最大采样频率是1 MHz。同时也需记下启动、跟踪、设置等时间,这在使用AFEC时会用到。另外,传送时间在芯片手册中没有详细说明,只说明将TRANSFER字段设置为1。

由于需要使用较高波特率进行UART通信,所以将MCK设置为96 MHz。在此情况下,能设置的最高的AFEC时钟频率为16 MHz(将AFEC_MR的PRESCAL参数设置为2),即每个AFEC时钟的周期为62.5 ns。

由此可以计算出,从关闭状态下,完全启动AFEC最多需要512个AFEC时钟。在实际应用中,这个数字可以减小。

三、AFEC初始化

准备工作为将MCK设置为96 MHz,开启UART并让printf通过UART输出。

PMC及GPIO设置。

AFEC工作模式。有两个寄存器可以设置AFEC的工作模式:

1234567891011121314AFEC0->AFEC_MR =AFEC_MR_TRGEN_DIS // 关闭硬件触发| AFEC_MR_SLEEP // 转换完成后进入睡眠模式| AFEC_MR_PRESCAL(2) // AFEC CLK = 96M / 6 = 16 M| AFEC_MR_STARTUP_SUT512 // MAX 32 us| AFEC_MR_SETTLING_AST3 // MIN 100 ns| AFEC_MR_ANACH_ALLOWED| AFEC_MR_TRACKTIM(2) // MIN 160 ns| AFEC_MR_TRANSFER(1)| AFEC_MR_USEQ_NUM_ORDER;AFEC0->AFEC_EMR =AFEC_EMR_RES_NO_AVERAGE // 进行 12bit 采样;

设置增益参数及关闭差分模式:

12AFEC0->AFEC_CGR = AFEC_CGR_GAIN5(0);AFEC0->AFEC_DIFFR &= ~((uint32_t)1 << 5); // 不使用差分模式

启用通道:

1AFEC0->AFEC_CHER = AFEC_CHER_CH5;

四、实现

转换指定通道的输入

1234567891011uint16_t GetADCValue(intch){// 软触发以开始转换AFEC0->AFEC_CR = AFEC_CR_START;// 等待转换完成(通过查询相应的EOC位判断转换是否完成)while((AFEC0->AFEC_ISR & (1<AFEC_CSELR = AFEC_CSELR_CSEL(ch);returnAFEC0->AFEC_CDR;}

轮询滑动变阻器的电压,并在电压波动超过指定阀值时打印出当前电压。

1234567891011121314151617constintmin_diff = 10; // 阀值intdiff;uint16_t adcv; // ADC转换的结果uint16_t last_adcv = ~0;while(1){adcv = GetADCValue(5);//判断电压波动是否超过阀值diff = (int32_t)adcv - last_adcv;if(!(diff > (-min_diff) && diff < min_diff)){last_adcv = adcv;printf("%dnr", (int)adcv);}// 等待for(volatileinti=0; i< 0xFFFF; ++i);}

五、校准

在运行该示例时,发现当滑动变阻器VR1逆时钟旋至极限,即PB1引脚电压为0V时,ADC的输出为2048左右。而当PB1电压约为3.3 V的一半时,ADC输出值约为4095——即达到输出的最大值。

可以推测出存在一个约为2048的偏移误差。这个误差在一个ASF的示例中被提及:“AFEC内部的偏移为0x800……”。所以我们需要对此进行校准:

1234AFEC0->AFEC_CSELR = 5;//AFEC内部偏移为 0x800//该校准在参考电压为3.3V 时有效AFEC0->AFEC_COCR = AFEC_COCR_AOFF(0x800);

AFEC_COCR的寄存器是作用于AFEC内部的DAC的:

同时,通过该模块图也可以知道增益与偏移校准作用于输入V的方式如下:

偏移电压:

V_offset = ( offset / 4096 ) * V_ref

ADC进行转换的电压:

V_adc_in = ( V – V_offset) * gain

最后,将转换的数值加上0x800。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭