当前位置:首页 > 通信技术 > 通信技术
[导读]传统数据中心以太网的典型架构是采用树状结构,按三层交换机制排列,从核心开始成扇形展开。这种设计来源于局域网架构,大概在10?15年前开始被数据中心所采用。当时,以太网风头正劲,它取代了SNA、令牌环和DEC-Net等

传统数据中心以太网的典型架构是采用树状结构,按三层交换机制排列,从核心开始成扇形展开。这种设计来源于局域网架构,大概在10?15年前开始被数据中心所采用。当时,以太网风头正劲,它取代了SNA、令牌环和DEC-Net等网络。近10年来,随着数据中心的不断发展,网络的不足之处开始暴露出来,包括性能不尽如人意、天生效率低下以及过于复杂等。在这些缺点中,真正阻碍构建虚拟化数据中心的是其复杂性。

  复杂性源自树状结构这一根本性架构。网络通常由多个自主的交换设备组成,这些设备通过共享协议协同工作。管理网络不但需要管理交换机,还要管理交换机之间的相互关联。随着网络容量的不断扩增,网络中交换机的数量也呈线性增加。不过,交换机之间潜在的相互关联的增加与交换机数量的平方有关,可以用公式i = n*(n-1)/2来表示,其中i指潜在相互关联的数量,n指被管理设备的数量。可以看出,被管理的相互关联的数量成几何级数增长,因而增加了网络的复杂性,结果遏制了虚拟化的好处。

  复杂性还限制了可扩展性。随着数据中心网络不断添加新端口、连接设备和流量,管理上的复杂性成几何级数增加,结果使庞大的第2层网络域变得无法管理。为了限制复杂性,许多数据中心中的网络被分隔成了多个物理网段。但遗憾的是,这恰恰有悖于渴望构建数量更少、规模更大的资源池的想法。另外,复杂性还遏制了网络架构变化,或迅速重新配置网络的能力,从而最终遏制了动态性。

  简化网络架构

  要克服网络屏障,关键在于简化网络,从架构层面重新考虑网络。下面是五个具体的办法:

  1.把物理网络的数量减少到最低程度。对大多数公司来说,首先要把多个以太网网络合并成一个物理网络。新的数据中心桥接(DCB)功能结合虚拟局域网(VLAN)就可以分离流量,并确定流量优先级。另外,可能的话,把存储流量合并到以太网网络上,这可以通过使用NAS、iSCSI或基于以太网的光纤通道(FCoE)等协议来实现。

  2.让物理网络扁平化。如今数据中心网络大多数用三层交换机制构建而成,最新的技术可以消除聚合层,把网络简化至两层,又不影响扩展网络连接的功能。网络扁平化可以减少需要管理的交换机和相互联系的数量,大大降低复杂性,同时提高性能、降低成本。

  3. 迁移到“网络结构(network fabric)”架构。与传统的树状架构相比,网络结构架构的其中一个重要方面是,网络结构中的所有单元都由单一控制平面(single control plane)来控制,其道理跟一个交换机中的所有端口都由单一控制平面来控制一样。实际上,网络结构是一组不同的物理单元,它们工作起来就像是一台逻辑分布式交换机。

  另外,网络结构可以很自然地与动态资源池进行联系。也就是说,虚拟端口(虚拟机与网络之间的接口)在网络结构中被定义或被配置后,网络中的每个物理端口都了解该配置。如果虚拟机在网络结构上迁移,虚拟端口配置会自动保存起来,虚拟机与其他联网资源的连接关系也得到保留。这些联网资源包括存储系统、负载均衡器、安全设备和边缘服务(路由器)。它还会自动保护流量分离机制,包括访问控制列表(ACL)、虚拟局域网和策略定义。这些都增强了资源池的动态性。

  4. 针对单点管理而设计。力求设计出这样的架构:仅利用一套自动化工具,就能把虚拟和物理网络的管理作为一项“任务”来处理。这有望消除不同的人负责配置虚拟和物理交换机(使用不同的工具或接口)时会出现的许多常见配置错误。如果这些配置不同步,就可能在最初配置虚拟机或迁移虚拟机时出现问题。

  5. 规划实施虚拟以太网端口聚合(VEPA)。VEPA(Virtual Ethernet Port Aggregation,802.1 Qbg)是一项新兴的开放标准,它有望改进网络与虚拟化服务器之间的相互联系。它让交换这项任务从虚拟机管理程序中脱离出来,完全依赖于物理网络。这样,虚拟交换机就可以充当直通设备,消除了整个交换层,从而显著减少需要积极管理的交换机和相互联系的数量。它还有望改善支持虚拟机迁移的网络信令机制,从而提高动态性。假设虚拟机管理程序和交换机支持VEPA,VEPA就允许在整个网络上无缝迁移虚拟机。

  为了获得虚拟化的全部好处,并且能够享用扩展性和动态性更强的资源池,我们需要重新设计数据中心网络架构,着眼于消除其固有的复杂性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭