当前位置:首页 > 通信技术 > 通信技术
[导读]摘要:介绍一款采用无线WIFI传输的便携式体征信息监测系统。该系统利用STC89S52单片机及DS18B20温度传感器、HK2000B型压电式脉搏传感器等模块采集生理体征信息,通过HLK—WIFIM03进行无线传输,结合用户Android

摘要:介绍一款采用无线WIFI传输的便携式体征信息监测系统。该系统利用STC89S52单片机及DS18B20温度传感器、HK2000B型压电式脉搏传感器等模块采集生理体征信息,通过HLK—WIFIM03进行无线传输,结合用户Android设备终端进行数据显示及反馈。采用人机友好交互界面进行体征信息管理,可实现远程体征信息监测、分析、警报等功能,具有低功耗、使用方便、操作简单等特点,应用前景广阔。
关键词:体征参数;WIFI;Android;监测系统

    随着时代的发展,人们开始越发地关注自身和家人的健康保健问题,然而目前市场上已有的针对个别生命体征的监测仪器,由于其普遍操作繁琐,专业性过强,信息显示单一及针对性不强等特点,始终无法在市场中得到推广。在此介绍一款基于智能系统,简约便利,具有低功耗、使用方便、操作简单等特点的生命体征监测系统。
    此款监测系统在集成实时监测体温脉搏等多项生命体征的同时,结合当下快速普及的Android智能系统,将最大化减少使用者的操作过程。用户仅需通过简单设置便可通过智能软件在随身设备上直观地实现对多项生命体征信息的实时动态,抑或间隔性监测,又可针对设定值对超标体征进行报警。同时,智能终端软件还可针对数据进行优化整理,建立个人体征信息数据库,针对个体情况作出分析,对个人健康提出合理化建议。

1 总体结构与工作原理
   
系统基于安全、可靠,使用方便、经济等原则,采用模块化设计思想。采集部分基于STC89S52单片机为核心,运用温度传感器DS18B2 0、HK2000B型压电式脉搏传感器等模块采集生理体征信息,经过滤波放大,数字化处理后由HLKWIFIM03模块通过无线传输至服务器,而后推送至用户终端进行显示。系统总体原理框图如图1所示。



2 系统设计
2.1 硬件电路设计
2.1.1 脉搏检测模块设计
   
心室周期性的收缩和舒张导致主动脉的收缩和舒张,使血流压力以波的形式从主动脉根部开始沿着整个动脉系统传播,这种波称为脉搏波。脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息,很大程度上反映出入体心血管系统中许多生理病理的血流特征。
    考虑到产品价格和所需精度的要求,本模块选择了合肥华科电子技术研究所研制开发的基于聚偏氟乙烯压电膜的HK-2000B型集成化脉搏传感器,它采用高度集成化工艺将力敏元件(PVDF压电膜)、灵敏度温度补偿元件、感温元件、信号调理电路集成在传感器内。压电式原理采集信号,模拟信号输出,输出完整的脉搏波电压信号,该产品主要应用于无创心血管功能检测、妊高征检测、中医脉象诊断等。脉搏采集部分主要构成如图2所示。


    脉搏传感器输出的模拟信号电压范围是-0.1~0.6V,为消除负号,满足后级单端输入A/D转换器的需要,设计了电压抬升电路如图3所示。


    经传感器输出的脉搏信号频率很低,极容易引入干扰,这些干扰有来自50 Hz的工频干扰,有来自肌体抖动、精神紧张带来的假象信号等。由于人的脉搏频率在0.1~70 Hz之间,为了不把有效的信号过滤掉,将低通滤波器的截止频率设为100 Hz,滤除系统的干扰,包括电压抬升引入的干扰以及工频干扰等,并把信号传输到A/D转换器中为下一步的模数转换做准备。
    MAX187是12位逐次逼近式串行A/D转换芯片,转换速度快,耗电量少。与单片机连接时采用3线接口的数据串行方式,MAX187与STC89S52单片机的接口电路如图4所示。


    STC89S52的P3.0、P3.1、P3.2脚分别与MAX187的SCLK、CS、DOUT端连接,通过控制MAX187的串口时序,完成A/D连续转换的读写操作。电源需要进行去耦合处理,典型接法是用一个4.7μF电容和一个0.1μF电容并联。当使用内部4.096 V参考电压方式时,4脚接一个4.7μF的退耦电容。此时输入模拟信号的电压范围为0~4.096 V,如果模拟输入电压不在这个范围要外加电路进行电压范围的变换。
2.1.2 体温检测模块设计
   
体温模块选用DALLAS公司生产的单总线式数字温度传感器DS18B20,它体积小,便于贴身式检测,输出为数字量,使用方便。测量温度范围为-55~+125℃。可用程序设定为9~12位的分辨率。当分辨率设置为12位时,转换精度为±0.062 5℃。与单片机的连接电路如图5所示。


    DS18B20的内部存储器分为两部分,一部分是包含8个连续字节的高速暂存RAM。温度信息存放在前2个字节,其中温度的低八位存放在第1个字节,高八位存放在第2个字节。TH、TL的易失性拷贝分别存放在第3、4个字节,结构寄存器的易失性拷贝存放在第5个字节,这3个字节的内容在每一次上电复位时都会被刷新。第6、7、8个字节用于内部计算。第9个字节是冗余检验字节。另一部分是存放高温度和低温度触发器TH、TL以及结构寄存器的非易失性的、电可擦除的E2ROM。DS18B20可以通过程序设置最高和最低报警温度TH和耵TL,实现对温度的越线报警控制。
    每次对DS18B20进行读写之操作前都要先进行复位(即初始化),复位成功后发送一条ROM指令,最后再发送RAM指令。
2.1.3 WIFI无线传输模块
   
无线传输模块部分我们采用的是海凌科(香港)有限公司推出的全新的第3代嵌人式Uart—Wifi模块HLK—WIFI—M03(图6所示)。Uart—Wifi是基于Uart接口的符合wifi无线网络标准的嵌入式模块,内置无线网络协议IEEE802.11协议栈以及TCP/IP协议栈,能够实现用户串口数据到无线网络之间的转换。


    5针:VDD接3.3V电源;8针:GND接地;6针:RXD接单片机TXD;7针:TXD接单片机RXD
    首先,将WiFi模块设置为透明传输模式,加入AP所在的局域网并与网内服务器建立socket连接,此时socket可以看作通信双方的“虚拟导线”。采集的体征信息可直接通过此“虚拟导线”透传至服务器。在服务器建立的软件可以对数据进行整合与分析,若出现越限情况,则服务器立即通过Internet将报警信号及用户体征信息发送至用户家人的手机或其他移动设备,同时可以将报警信息发送至医院,以便对病人进行急救。
2.2 软件设计
   
系统在用户终端上我们选用Android智能系统作为应用平台。Android是由谷歌(Google)和开放手机联盟(OpenHandset Alliance)支持的一个手机软件开发平台,支持多种无线网络连接方式,如GPRS、WiFi、蓝牙等。通过这些方式,Android手机可以方便地通过无线网络通信,访问Internet和各种网络上的服务器。同时Android框架提供了对HTTP等通讯协议的支持。
    Android应用程序是以许多Android API组件为基础进行开发的,下面是几种主要的API组件:当前活动程序Activity是最常用的应用程序组件,可以把Activity简单的理解成一个用户所看到的屏幕,称之为“活动”。它主要用于处理程序的整体性工作,通过调用onCreate()、onStart()、onRestart()、onResume()、onStop()、onDestory()等方法来实现运行、暂停、停止等状态。例如监听按键、触摸屏等事件,指定图像显示View,启动其他Activitv。Android用Intent类实现启动其他Activily,它调用startActivity(myIntent)方法触发解析myIntent动作,新的Activity接收到myIntent通知后,开始运行,例如通过Activity的切换实现显示布局的切换。ContentProvider类是一个特殊的存储数据的类型,它实现了数据的存储与共享。Service是运行在后台的应用程序组件,不直接与用户交互。当前活动程序可以使用Context.
StartService()开启一项后台服务,还可以通过Context.bindService()与后台服务通信。在Android的Java程序中,实现人机交互的控件是通过事件处理的,需要指定控件所用的事件监听器。事件响应部分代码如下:
   

3 系统调试
   
首先对WIFI模块进行参数配置,使其工作于透明传输模式,随时进行数据的传输。通过单片机对串口的写操作命令将数据通过无线传输在手机界面上显示出来。
    然后对脉搏进行校准,将系统测得的人体脉搏数据与标准脉搏计测得的数据进行比较,结果表明两者误差在±5 Hz。
    最后进行体温的测试,通过对软件、硬件的调试。在显示界面得到一个温度数据,然后和标准体温计测得的数据进行比较,结果表明两者差异在±0.1℃。设定体温高低阈值分别为38℃、35℃,当给定的测试温度为小于35℃或大于38℃时,用户手机会自动弹出报警提示界面。
    体温采集显示如图6所示,横轴为软件运行时间,纵轴为体温值。


    心率采集显示如图7所示,根据时间进行记录并上传至服务器。



4 结束语
   
此款监测系统在集成实时监测体温、心率等多项生命体征的同时,结合当下快速普及的手机智能系统,将采样的体征信息通过WiFi网络传输至信号处理中心,由信号处理中心对采样信息进行编译和处理,形成一定的波形、数据结果,再由网络传输到其接收端,结合用户Andr oid设备终端进行数据显示及反馈。采用人机友好交互界面进行体征信息管理,可实现远程体征信息监测、分析、警报等功能,具有低功耗、使用方便、操作简单等特点,应用前景广阔。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭