当前位置:首页 > 通信技术 > 通信技术
[导读] 一、无源互调介绍在无线通信系统中,日益增加的语音和数据信息必须在一个固定带宽中传输,无源互调失真已经成为限制系统容量的重要因素。就好像在有源器件中,当两个频率以上的信号以一个非线性形式混合在一起时,就

 一、无源互调介绍

在无线通信系统中,日益增加的语音和数据信息必须在一个固定带宽中传输,无源互调失真已经成为限制系统容量的重要因素。就好像在有源器件中,当两个频率以上的信号以一个非线性形式混合在一起时,就会产生一些伪信号,这就是无源互调信号。当这些伪互调信号落在基站的接收(上行)频段内时,接收机就会发生减敏现象。这种现象可以降低通话质量,或者降低系统的载干比(C/I),从而减少通信系统的容量。

造成无源互调的原因很多,其中包括机械接触不良,射频通道中的含铁导体,和射频导体表面的污染。事实上,很难准确预知器件的 无源互调值,测量所得的数据只能用来大致描述器件的性能。由于结构技术方面的微小改变都会导致互调指标的严重变化,所以一些生产厂商通过对产品100%的 检验来保证基站中使用的射频器件的无源互调水平都能满足指标要求。

当存在两个或两个以上频率时,基站的大功率传输通道中的每个组件和子系统都会产生互调失真。本文仅关注其中的一种组件:集成电缆。针对集成电缆产生的互调失真既是有方向性的,又是依赖于频率的理解,对于集成电缆的指标及其在通信基站中的使用是一个非常重要的因素。

二、电缆互调测试的实现

一 条集成电缆(或者是任何两端口射频器件)都有两种无源互调响应:反射互调和通过互调。图1为Summitek公司的无源互调分析仪测量这两个互调信号的原 理。在SI-1900A型设备中,通过端口1向集成电缆注入两个大功率信号,电缆的另一端与端口2连接。端口2作为这两个大功率信号的负载,并且其无源反 射互调很小,可忽略。在端口1处测量反射无源互调响应,在端口2处测量通过(即前向)无源互调。与目前使用的大多数无源互调测试设备不同的 是,Summitek公司的互调分析仪支持前向和反向互调响应的同时测量,而不需要重新接驳。这样可以避免重新接驳时所必须的配对和再配对操作,从而使反 射响应和通过响应的测量误差最小化。将该特性与Summitek分析仪的扫频互调测量功能相结合,就可以对电缆完整的互调特性做测量了。

图1(a) Summitek 无源互调失真分析仪对反射和通过互调响应的测试框图

图1(b)用于集成电缆互调测量的分析仪图片

三、电缆互调特性

图2中的模型有助于对集成电缆的反射和通过互调特性的理解。

图2 用来说明集成电缆反射和通过互调响应的模型

图 中的中间部分是集成电缆本身。在这个模型中,关键是假定集成电缆中只有接头部分产生互调。换句话说,尽管当信号沿着电缆的长度传输,电缆本身会产生损耗和 群时延,但是相对于接头,电缆本身不产生大的互调,可以用图2中H( )的传输函数来表示。用IMa和IMb来表示集成电缆接头产生的互调响应。在本模型中,我们假设互调只产生在每个接头中单一的一点上,并且假设互调一旦产 生后,其双向传输是等能量传输的。

模型的左边是端口1,该端口用来将两个+43dBm的信号注入集成电缆(见图1(a)的框图)。这两个信 号在图2中表示为向量A1和A2。无源互调测试系统本身也会产生互调,用向量IM1表示。注意,和该模型中的其他互调响应一样,IM1响应也是自其产生处 双向传输的。假定,端口1的互调响应和电缆a端的互调是协同定位的,换句话说,这两个互调源之间的电磁波距离可以忽略不计。

模型的右边是端口2,该端口也会产生一个不希望出现的小互调能量,以IM2表示。所有用于端口1的假设同样适用于端口2。通观完整的集成电缆无源互调的测量模型,以下几条值得关注:

每个测试端口都有与其相关的4个互调响应。其中两个是接头末端产生的,另两个是互调分析仪自身产物。

电缆b端的互调(IMb)和端口2的互调(IM2)会通过电缆反向传输,从而产生的反射互调响应可以在端口1处测量。

电缆a端的互调(IMa)和端口1的互调(IM1)会通过电缆进行传输,从而产生的通过互调响应可以在端口2处测量。

通过这个模型,集成电缆的互调值就可以被确定了。

四、使用模型预计互调特性

虽然预计一个给定的射频器件的互调绝对值是非常困难的,但是单个互调源之间的相互作用在图2的模型中可以很容易地被表现出来。

首先,我们已经知道了每一个互调源的三阶互调公式。以端口1和电缆a端的响应开始,互调响应为:

三阶互调的频率为:

w3 ≡2ω2 −ω1

其中

t:时间

IM1:端口1的三阶互调响应

IMa:电缆a端的三阶互调响应

σ1:端口1的互调系数,即端口1(=10[dBc/20.])的dBc响应的简单数字转化

σa:端口a的互调系数,即端口a(=10[dBc/20.])的dBc响应的简单数字转化

ω1, 2, 3:分别为载波1,载波2和产生的三阶互调响应的频率弧度

电缆b端和端口2的互调响应相对稍微复杂。两个载波产生的互调响应可以通过电缆传输函数H(w)表示。为了简化公式,和消除非线性功率对互调产物及其载波的影响,假设电缆是无损耗的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭