当前位置:首页 > EDA > 电子设计自动化
[导读]赛灵思:魔咒将失效一直以来,在FPGA领域,对赛灵思和Altera而言,除了摩尔定律,似乎还有另一条魔咒在起作用。那就是风水轮流转,30年河东、30年河西,在工艺节点的演进中,每一家都只能保持一代的优势。65nm赛灵思

赛灵思:魔咒将失效

一直以来,在FPGA领域,对赛灵思和Altera而言,除了摩尔定律,似乎还有另一条魔咒在起作用。那就是风水轮流转,30年河东、30年河西,在工艺节点的演进中,每一家都只能保持一代的优势。65nm赛灵思胜出,到了40nm就是Altera坐庄,而28nm的市场优势又交回给了赛灵思。

这点也不难理解,在某一代掌握优势的厂商就会想花更多精力在这一代的推广和运营上,而在某一代失守的厂商自然会把更多精力投入到下一代的研发中希望尽快收复失地。但就在最近,赛灵思公司全球高级副总裁、亚太区执行总裁汤立人表示“赛灵思要打破这一魔咒”,与此同时宣布赛灵思抢先一步发片20nm工艺的FPGA产品,将“继续领先一代”。

赛灵思公司全球高级副总裁、亚太区执行总裁汤立人

打破魔咒的砝码

看看是怎样的产品让赛灵思有如此自信。赛灵思称最新20nm工艺FPGA产品为“ASIC级的可编程架构”并将该新架构命名为“UltraScale”,可理解为超范围,顾名思义,赛灵思想借全新ASIC级的产品进入更广泛的原有ASIC的市场。

对照Altera前不久发布的下一代10系列产品Arria 10和Stratix 10的信息,两家厂商都在产品的命名上下了一番功夫。与Altera更多强调产品性能提升不同,赛灵思的最新产品在架构上做了很多优化,从而让产品在功耗等性能方面拉近和ASIC产品的距离,而这些是此前FPGA产品进入原有ASIC市场的最大障碍,最新UltraScale架构的推出也让赛灵思更进一步接近自己的目标—替代ASIC/ASSP。汤立人提到,28nm工艺的产品推出后,在通信领域的客户中,其中有40%原来是采用ASIC器件的,相信这也是让赛灵思确信FPGA在替代ASIC方面将大有作为的信心来源。

赛灵思对UltraScale架构的优化包括:

1. 布线

汤立人透露,虽然在28nm工艺下FPGA产品可达到数十万甚至上百万的逻辑单元数,但因为普遍存在的布线拥塞等问题,实际的器件利用率只能达到70~80%,这也是一些客户反映比较多的一个问题。

在最新的UltraScale架构中,赛灵思采用了一种更智能的布线方式,从下图中我们可以看到其形象的描述。而更直观的理解是,通过对整体逻辑单元的更合理布局形成一些快速通道,减少了对很多作为中间布线通道的逻辑单元的浪费,从而让更多的逻辑单元能够发挥更重要的系统功能的作用。经这种布线优化后,器件利用率可达到90%,且不影响产品性能。

UltraScale架构的布线优化

2. 时钟

在高速系统中往往需要512到2048位宽度的总线,这时原有FPGA产品的时钟歪斜问题就越发凸显UltraScale架构采用类似ASIC时钟几乎可将时钟布置到晶片的任何地方,极大改善了延迟的问题,使系统级时钟歪斜大幅降低达50%。

UltraScale架构的类ASIC时钟布线

从上图我们可以看到,UltraScale采用多区域时钟功能,类似时钟树的布局。

3. 关键路径

架构在关键路径优化方面所做的工作包括:大幅增强DSP处理,即增加DSP单元;提供高速存储器级联,从而消除DSP和包处理中的瓶颈问题,即互联性,也避免使用更多片上布线或逻辑资源;将高强度I/O功能做硬化IP处理,基于现有I/O功能相对完善不需要占用编程资源,这样的做法可以降低时延同时释放逻辑和布线资源。

4. 电源管理

汤立人表示,赛灵思采用20nm工艺的产品较上一代产品静态功耗将降低35%,动态功耗也大大降低。而单纯工艺节点的降低达不到这么显著的效果,赛灵思通过一系列电源管理功能的优化才实现了这一点。

Virtex UltraScale用于4*100G MuxSAR OTN交换的解决方案

 

 

Virtex UltraScale用于4*100G MAC to Interlaken桥接器解决方案

 

 

Kintex UltraScale用于超高视频处理解决方案

 

 

Kintex UltraScale用于256通道超声图像处理解决方案

基于UltraScale架构的产品首先推出的是Artix UltraScale和Virtex UltraScale系列,与之配合的Vivado设计套件早期试用版现在已经开始供货,相关器件将在今年第四季度开始供货,UltraScale架构也将用于下一代的Zynq系列并将扩展到16nm工艺的产品。

两大厂商间又一场时间的战役已打响,谁能最先拿出产品来才是决定胜负的关键,而赛灵思是否能如其所愿的打破魔咒也就在此一举了。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭