首页 > 应用 > 工业控制
[导读]电压跟随器应用广泛,生活中大大小小的电子器件中均包含电压跟随器。本文对于电压跟随器的讲解,在于向大家介绍LM358电压跟随器的设计方案以及电压跟随器运放相关内容。此外,如果你对如何使用LM324搭建电压跟随器具备一定兴趣,可翻阅上篇电压跟随器相关文章。

电压跟随器应用广泛,生活中大大小小的电子器件中均包含电压跟随器。本文对于电压跟随器的讲解,在于向大家介绍LM358电压跟随器的设计方案以及电压跟随器运放相关内容。此外,如果你对如何使用LM324搭建电压跟随器具备一定兴趣,可翻阅上篇电压跟随器相关文章。

一、LM358电压跟随器设计方案

LM358是双运放组成的运算放大器,可以单电源供电,也可以双电源供电。常用来做电压信号采集的前端电压跟随器,同时起到增加输入阻抗的作用,避免影响被测量的电压值。我拆了一个信号采集卡,把它里面的电压信号采集前端358电路画了出来,与大家分享。

image1.jpg

经验分享:LM358当工作在单电源5V供电时,当IN+从0~5V输入,其输出电压OUT只能从0~3.7V,而不是0~5V,也就是说,当IN+输入0~3.7V时,电压可以跟随到OUT,当输入大于3.7V时,输出将还是3.7V,大不了了。那怎么办?

image2.jpg

LM358引脚图

解决方法1:增加LM358的电源电压,比如加个12V,这时候,你的IN+从0~5V,OUT也可以从0~5V了。不过,当你的系统没有+12V电源可用,专门增加一个+12V电源,可不是一个好办法,而且,当你提供+12V时,万一输入超过了5V,输出也会超过5V,这时候,你的单片机ADC引脚超压,就有坏的可能哦,这样的产品,确实能用,实则不耐用,请君慎重考虑。

解决方法2:在IN+的前端,加分压电阻,例如,加两个精密10K的电阻,如上图所示(阻值改为2个10K),这样当输入电压为0~5V时,IN+脚电压为0~2.5V,OUT引脚也可以从0~2.5V,在在单片机内部把测量到的值乘以2,即是实际的输入电压值。此种方法相比前者,要可取,最起码系统就经久耐用的,不会造出国产垃圾。不过,有个缺点,就是分辨率降低一倍,在某些应用中,这是致命伤,例如电子台秤。

解决方法3:换IC,不用LM358了,用一个满幅电压运放,业内称为rail to rail的运放,例如工业中常用的TLC2262,引脚功能和LM358一样,也就是说两个可以互换,但是,当IN+为0~5V时,TLC2262的OUT可以从0~5V,当然,TLC2262的价格要比LM358贵。此芯片已被广泛应用于各种工业场合,在成本不是很敏感的前提下,请君放心使用!

image3.jpg

TLC2262引脚图

二、电压跟随器运放

在电路中,电压跟随器一般做缓冲级及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器来从中进行缓冲。起到承上启下的作用。应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。

电压跟随器的另外一个作用就是隔离,在HI-FI电路中,关于负反馈的争议已经很久了,其实,如果真的没有负反馈的作用,相信绝大多数的放大电路是不能很好的工作的。但是由于引入了大环路负反馈电路,扬声器的反电动势就会通过反馈电路,与输入信号叠加构成电压跟随器的。造成音质模糊,清晰度下降,所以,有一部分功放的末级采用了无大环路负反馈的电路,试图通过断开负反馈回路来消除大环路负反馈的带来的弊端。但是,由于放大器的末级的工作电流变化很大,其失真度很难保证。

image4.jpg

传统运放电路

三、注意事项

对于采用负反馈的放大电路,如何减少振荡以保持稳定,目前尚无定论。电压跟随器也不例外。

运算放大器理想的运行状态是输出电压和输入电压为同相,即,当负输入端的印加电压引起输出增大时,运算放大器能够相应地使增加的电压降低。不过,运算放大器的输入端和输出端的相位总有差异。当输出和输出之间的相位相差180°时,负输入与正输入正好相同,原本应该减少的输出却得到了增强。(成为正反溃的状态。)如果在特定频段陷入这一状态,并且仍然保持原有振幅,那么该输出频率和振荡状态将一直持续下去。

image5.jpg

电压跟随器和反馈环路

以上便是此次小编带来的“电压跟随器”相关内容,通过本文,希望大家对LM358电压跟随器具备一定的认知。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

换一批

延伸阅读

[工业控制] 电压跟随器秘笈(七),电压跟随器音质改进作用+LM324搭建电压跟随器

电压跟随器秘笈(七),电压跟随器音质改进作用+LM324搭建电压跟随器

电压跟随器可控制输入/出电压相同,对于电压跟随器,小编曾带来六篇文章。本文中,对于电压跟随器的讲解,主要基于两大方面:一、电压跟随器对音质的改进作用,二、如何用LM324运放搭建电压跟随器。如果你对正文部分将要讲解的电压跟随器内容存在一定兴......

关键字:电压跟随器 LM324 音质

[工业控制] 了解下什么是电压跟随器

了解下什么是电压跟随器

电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相,也就是电压跟随器的电压放大倍数恒小于且接近1。当RF=0,R1=∞,即uo=ui,Auf=1这时输出电压跟随输入电......

关键字:电压跟随器 运算放大器 共集电极电路

[工业控制] 电压跟随器秘笈(六),电压跟随器作用最全解析

电压跟随器秘笈(六),电压跟随器作用最全解析

对于电压跟随器,想必很多朋友较为熟悉,但你对电压跟随器真的了解吗?如果你是电压跟随器大佬,能不加思考的阐述电压跟随器几大作用吗?如果你没有自信做到这一切,不妨阅读本文与电压跟随器作用相关内容哦,主要内容如下。......

关键字:电压跟随器 电压跟随器作用 共集电路

[工业控制] 电压跟随器秘笈(五),电压跟随器对于AD转换器的作用

电压跟随器秘笈(五),电压跟随器对于AD转换器的作用

电压跟随器为重要电子器件,因此电压跟随器具备较强使用价值。为增进大家对电压跟随器的理解,本文将提出一个问题:AD转换器前为何需添加电压跟随器。如果你对该问题存在一定疑惑,表明你对电压跟随器的了解程度较低。如果你不知道答案,不妨在本文中一探究......

关键字:电压跟随器 AD 转换器

[工业控制] 电压跟随器秘笈(四),分析电压跟随器输入/输出误差

电压跟随器秘笈(四),分析电压跟随器输入/输出误差

电压跟随器是常用的电子元器件之一,对于电压跟随器,小编曾带来过相关文章。为增进大家对电压跟随器的理解,本文将以另一个视角对电压跟随器加以讲解。......

关键字:电压跟随器 相位差 运算放大器

[工业控制] 电压跟随器秘笈(三),搞定电压跟随器跟随特性+电路原理

电压跟随器秘笈(三),搞定电压跟随器跟随特性+电路原理

何为电压跟随器、电压跟随器的主要用途以及电压跟随器的特点,是往期文章中的主要讲解内容。为进一步增进大家对电压跟随器的了解,本文将为大家介绍电压跟随器的跟随特性以及电压跟随器的电路原理。如果你对本文内容存在一定兴趣,不妨继续阅读以下正文部分哦......

关键字:电压跟随器 跟随特性 电路原理

[工业控制] 电压跟随器秘笈(二),电压跟随器主要用途有哪些?

电压跟随器秘笈(二),电压跟随器主要用途有哪些?

电压跟随器在现实生活中的应用范围远超想象,但对于电压跟随器,一般群众并不了解。前文中,曾对电压跟随器的电路、电压跟随器的特点加以介绍。本文中,将着重讲解电压跟随器的主要用途。如果你对本文的内容存在一定兴趣,不妨继续阅读一下正文哦。......

关键字:电压跟随器 主要用途 应用

[工业控制] 电压跟随器秘笈(一),电压跟随器面目+特点

电压跟随器秘笈(一),电压跟随器面目+特点

电压跟随器在各大电子器件中均有所应用,但大多人并非了解电压跟随器。为增进大家对电压跟随器的了解,本文将揭露电压跟随器的真实面目,并介绍电压跟随器的特点以及其电路,一起来了解下吧。......

关键字:电压跟随器 特点 电路

[模拟技术] 精讲运放的轨到轨与偏置电压设计---MCP6002

精讲运放的轨到轨与偏置电压设计---MCP6002

运算放大器的轨到轨和偏置电压的设计方法和介绍......

关键字:运放 轨到轨 偏置电压

我 要 评 论

网友评论

技术子站

更多

项目外包

更多

推荐博客