当前位置:首页 > EDA > 电子设计自动化
[导读]VirtexE系列是XILINX公司生产的新型FPGA芯片,可用来进行数十万逻辑门级的系统设计和百兆赫兹级的高速电路设计。

   摘要:VirtexE系列是XILINX公司生产的新型FPGA芯片,可用来进行数十万逻辑门级的系统设计和百兆赫兹级的高速电路设计。文中介绍了XCV50E芯片的结构特性、设计流程和配置过程,给出了具体的电路图和配置流程图。

    关键词:FPGA 可配置逻辑块 设计流程 配置

XCV50E是XILINX公司VirtexE系列系统级FPGA芯片中的一员。其主要资源有71693个系统门、65536位块内存和176个用户I/O口(其中包括83对差分I/O口)。主要特性有:1.8V超低核心电压、支持20种高速总线标准、八个全数字延迟锁定环、0.18微米6层金属工艺、支持IEEE 1149.1边界扫描。VirtexE系列FPGA芯片具有卓越的整体性能和高速特性,是实现高速系统级设计的优选芯片。下面以XCV50E为例,介绍VirtexE系列FPGA的结构特性和开发流程。

1 XCV50E芯片的结构

XCV50E芯片主要由四部分组成,其结构图如图1所示,芯片中央是由16×24个可编程逻辑块(CLB)构成的CLB阵列,用以实现芯片的主要逻辑功能。芯片中16个4kB的块内存(Block RAM

或BRAM)组成4个块内存槽,位于CLK阵列的两端及接近芯片中心的位置。块内存可用作高速RAM或FIFO。环绕CLB阵列的是叫做VersaRing的布线资源,它连接内部的逻辑信号到输入输出单元。输入输出单元位于芯片周边,用以实现不同标准信号(如LVDS、CMOS、GTL)间的和转换。

1.1 可配置逻辑块

可配置逻辑块是FPGA的核心部分,主要用来实现各种逻辑功能。其内部结构见图2所示。每个可配置逻辑块包括左右两个功能片。每个功能片包括两个逻辑单元。每个逻辑单元由一个四输入查找表(LUT)、一个进位逻辑和一个寄存器组成。查找表可作为函数产生器来使用,也可用作高速16位移位寄存器或16×1的随机存取内存(RAM)。为扩展芯片的逻辑功能,在每个功能片中还设有一个F5复选器,在每个逻辑块中设有一个F6复选器,可分别用以实现9输入的函数和19输入的函数。

1.2 通用布线资源

芯片内部与可配置逻辑块阵列相匹配的是通用布线矩阵阵列(GRM)。GRM是开关矩阵,它用足够的连线将对应的可配置逻辑连接到相邻可配置逻辑块和部分远端的可配置逻辑块。芯片内有许多双向长线分别横贯和纵贯整个芯片,利用它们可以快速高效地分配信号。通过通用布线资源,各个可配置逻辑块和块内存构成了一个高速动作的统一整体。

图2

    1.3 VersaRing布线资源

VersaRing环绕着芯片中央的CLB阵列,它将阵列信号与芯片I/O管脚相连。VersaRing以毫微秒级的速度将任一内部逻辑信号连接到芯片的任一I/O管脚。正是由于XCV50E这种信号分配的任意性,使得XCV50E的设计工作可以与电路板制版并行进行,从而大大缩短了开发周期。

1.4 延迟锁存环(DLL)

芯片内有八个延迟锁定环,借助它们可以实现高速零时延的时钟信号,延迟锁定环的输入时钟范围是25MHz~350MHz,输出时钟的传输时延为零,边沿抖动小于60ps。锁定环可对时钟进行二倍频或2~16倍分频,并可进行90o、180o、270o的移相操作。使用延迟锁定环可有效解决高速应用中信号的时滞和抖动问题。

2 XCV50E的开发

笔者使用Xilin Foundation F4.1来开发

XCV50E芯片。Xilin Foundation F4.1是Xilinx公司主要的FPGA芯片开发平台之一。基于该平台可实现XCV50E芯片从设备构想到此特流下载的全部过程。图3所示是基于该平台开发XCV50E的设计流程。该平台的由设计入口工具、设计实现工具、设计验证工具三大部分构成。设计入口工具接收各种图形或文字的设计输入,并最终生成网络表文件。设计实现工具将网络表转化为配置比特流,并下载到器件。设计验证工具用来对设计中的逻辑关系及输出结果进行仿真和时序阻制分析。

    对于系统级设计,一般可以使用基于原理图的层次化设计,过程如下:先以系统结构原理图作为顶层图,自上而下的构造基于模块的结构子图,同时自下而上的将结构子图的结构子图,同时自下而上的将结构子图具体体(用VHDL评议或元件互连关系表示出来),并对每个模块和子图进行功能性仿零点,以保证每层逻辑关系都是正确进行功能性仿真,以保证每层逻辑关系都是正确的。顶层原理图具体化并完成功能仿真后,再添加必要的输入输出元件,即可合成系统网络表。之后,对系统网络表进行翻译、映射、放置和布线,并利用流程引擎产生的时序信息进行时序仿真和时序分析。然后采用修改入口设计、设置各种属性和限制、调整其片布局等方法完善设计,直到达到设计要求,最后将优化后的配置比特流下载到FPGA芯片中。

3 XCV50E的应用配置

XCV50E芯片是基于静态RAM(SRAM)的FPGA,其配置信息必须固化到另外的可编程ROM(PROM)芯片中。系统加电后,XCV50E芯片首先从PROM中读取配置信息并加载到配置内存中。VirtexE系列芯片中支持四种配置模式,分别为主串行模式、从串行模式、并行模式和边界扫描模式。

图4是XCV50E在主串行模式的配置电路图。图中配置模式选择位M2、M1、M0均连接到地;PROGRAM为FPGA配置控制信号;FPGA的配置数据输入管脚DIN连接到PROM芯片XC18V01的数据输出脚DATA;初始化指示信号INIT用作XC08V01的复位信号;配置完成信号DONE用作PROM的片选信号。配置过程如下:当系统加电并且PROGRAM首脚升高后,配置过程开始,XCV50E首先进行内部的初始经,初始化完成后,VCV50E释放INIT管脚,并从下一个配置时钟的上升沿开始从PROM中读入配置数据流;全部数据读完后,FPGA发出配置结束信号DONE来关闭PROM,配置过程结束。下一个时钟起,XCV50E运行启动进程,之后就可以按设定的程序工作了。图5给出了XCV50E的配置流程图。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭