当前位置:首页 > EDA > 电子设计自动化
[导读]一 STM32 ADC 采样 频率的确定先看一些资料,确定一下STM32 ADC 的时钟:(1),由时钟控制器提供的ADCCLK 时钟和PCLK2(APB2 时钟)同步。CLK 控制器为ADC 时钟提供一个专用的可编程预分频器。(2)一般情况下在程序 中将

一 STM32 ADC 采样 频率的确定

先看一些资料,确定一下STM32 ADC 的时钟

(1),由时钟控制器提供的ADCCLK 时钟和PCLK2(APB2 时钟)同步。CLK 控制器为ADC 时钟提供一个专用的可编程分频器

(2)一般情况下在程序 中将 PCLK2 时钟设为 与系统时钟 相同

RCC_HCLKConfig(RCC_SYSCLK_Div1);

RCC_PCLK2Config(RCC_HCLK_Div1);

RCC_PCLK1Config(RCC_HCLK_Div2);

(3)在时钟配置寄存器(RCC_CFGR) 中 有 为ADC 时钟提供一个专用的可编程预分器

位15:14 ADCPRE:ADC预分频

由软件设置来确定ADC时钟频率

00:PCLK2 2分频后作为ADC时钟

01:PCLK2 4分频后作为ADC时钟

10:PCLK2 6分频后作为ADC时钟

11:PCLK2 8分频后作为ADC时钟

我们可对其进行设置例如:

RCC_ADCCLKConfig(RCC_PCLK2_Div4);

另外还有 ADC 时钟使能设置

RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 |

RCC_APB2Periph_GPIOC, ENABLE);

(4)16.7 可编程的通道采样时间

ADC 使用若干个ADC_CLK 周期对输入电压采样,采样周期数目可以通过ADC_SMPR1 和ADC_SMPR2 寄存器中的SMP[2:0]位而更改。每个通道可以以不同的时间采样。

总转换时间如下 计算:

TCONV = 采样时间+ 12.5 个周期

例如:

当ADCCLK=14MHz 和1.5 周期的采样时间

TCONV = 1.5 + 12.5 = 14 周期 = 1μs

SMPx[2:0]:选择通道x的采样时间

这些位用于独立地选择每个通道的采样时间。在采样周期中通道选择位必须保持不变。

000:1.5周期 100:41.5周期

001:7.5周期 101:55.5周期

010:13.5周期 110:71.5周期

011:28.5周期 111:239.5周期

注:

– ADC1的模拟输入通道16和通道17在芯片内部分别连到了温度传感器和VREFINT。

– ADC2的模拟输入通道16和通道17在芯片内部连到了VSS。

2. 具体分析如下:

(1)我们的输入信号是50Hz (周期为20ms),初步定为1周期200个采样点,(注:一周期最少采20个点,即采样率最少为1k) ,每2个采样点间隔为 20ms /200 = 100 us

ADC可编程的通道采样时间我们选最小的 1.5 周期,则 ADC采样周期一周期大小为100us /1.5=66us 。 ADC 时钟频率为 1/66us =15 KHz。

ADC可编程的通道采样时间我们选71.5 周期,则 ADC采样周期一周期大小为(100us /71.5) 。 ADC 时钟频率为 7.15MHz。

(2)接下来我们要确定系统时钟:我们 用的是 8M Hz 的外部晶振做时钟源(HSE),估计得 经过 PLL倍频 PLL 倍频系数分别为2的整数倍,最大72 MHz。为了 提高数据计算效率,我们把系统时钟定为72MHz,(PLL 9倍 频)。则PCLK2=72MHz,PCLK1=36MHz;

我们通过设置时钟配置寄存器(RCC_CFGR) 中 有 为ADC 时钟提供一个专用的可编程预分器,将PCLK2 8 分频后作为ADC 的时钟,则可 知ADC 时钟频率为 9MHz

从手册可知: ADC 转换时间:STM32F103xx 增强型产品:ADC 时钟为56MHz 时为1μs(ADC 时钟为72MHz 为1.17μs)

(3)由以上分析可知:不太对应,我们重新对以上中 内容调整,提出如下两套方案:

方案一:我们的输入信号是50Hz (周期为20ms),初步定为1周期2500个采样点,(注:一周期最少采20个点,即采样率最少为1k) ,每2个采样点间隔为 20ms /2500 = 8 us

ADC可编程的通道采样时间我们选71.5 周期,则 ADC采样周期一周期大小为8us /71.5 。 ADC 时钟频率约为 9 MHz。

将PCLK2 8 分频后作为ADC 的时钟,则可知ADC 时钟频率为 9MHz

方案二:我们的输入信号是50Hz (周期为20ms),初步定为1周期1000个采样点,(注:一周期最少采20个点,即采样率最少为1k) ,每2个采样点间隔为 20ms /1000= 20 us

ADC可编程的通道采样时间我们选239.5周期,则 ADC采样周期一周期大小为20us /239.5 。 ADC 时钟频率约为 12 MHz。

将PCLK2 6 分频后作为ADC 的时钟,则可 知ADC 时钟频率为 12MHz

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子电路设计中,确保电源的稳定和安全至关重要。LTC4365 作为一款出色的过压(OV)、欠压(UV)以及反向极性故障保护控制器,在众多领域得到了广泛应用。其能够为电源输入电压可能出现过高、过低甚至负值的应用场景提供可...

关键字: 控制器 栅极 输出电压

ZCC3790 作为一款同步 4 开关升降压电压 / 电流调节器控制器,展现出了强大的性能。它能够在输入电压高于、低于或等于输出电压的复杂情况下,精准地调节输出电压、输出电流或输入电流。其恒定频率、电流模式架构赋予了它灵...

关键字: 升降压 控制器 宽电压

2025年8月12日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子(Mouser Electronics) 是Phoenix Contact解决方案的全球授权代理商。贸泽供应超过93,000种可订...

关键字: 楼宇自动化 控制器 连接器

在之前的文章“为机器人技术的未来发展筑牢安全防线:网络安全的作用”中,我们全面介绍了机器人控制系统面临的安全挑战。文章强调了遵守机器人行业安全标准的重要性,并探索了加强机器人控制系统保护所需的基本安全能力。此外,我们还展...

关键字: 机器人 PLC 控制器

工业4.0的核心是工厂自动化,工业机器人、自主移动机器人(AMR)和协作机器人对于实现现代工业4.0至关重要。机器人正日益智能化,协作能力不断增强,能够在有人或无人干预的情况下高效完成复杂任务。随着自动化程度和机器人使用...

关键字: 机器人 工业4.0 控制器

全新 I/O 解决方案赋予制造商更大的设计自由度,打造更智能、更具适应性更的设备

关键字: 控制器 I/O 系统

【2025年7月24日, 德国慕尼黑讯】全球功率系统和物联网领域的半导体领导者英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日推出新型英飞凌ID Key系列,进一步扩展其通用串行总线(USB)...

关键字: 控制器 USB 非易失性存储器

挑战赛鼓励参与者利用 WL-ICLED 技术展示创意

关键字: LED 控制器

上海2025年7月21日 /美通社/ -- 本文围绕跨域时间同步技术展开,作为智能汽车 "感知-决策-执行 -交互" 全链路的时间基准,文章介绍了 PTP、gPTP、CAN 等主流同步技术及特点,并以...

关键字: 时钟 时间同步 同步技术 智能汽车

许多电源转换应用都需要支持宽输入或输出电压范围。ADI公司的一款大电流、高效率、全集成式四开关降压-升压型电源模块可以满足此类应用的需求。该款器件将控制器、MOSFET、功率电感和电容集成到先进的3D集成封装中,实现了紧...

关键字: 稳压器 控制器 MOSFET
关闭