当前位置:首页 > EDA > 电子设计自动化
[导读]0 引言目前,液晶显示行业得到迅速的发展,但由于液晶模块的生产不可能达到100%的成品率,或多或少地存在缺陷,目前在TFT模块的生产工艺中就有可能产生点缺陷和线缺陷等。为了及早对产品的质量进行检测,液晶测试仪器成为

0 引言

目前,液晶显示行业得到迅速的发展,但由于液晶模块的生产不可能达到100%的成品率,或多或少地存在缺陷,目前在TFT模块的生产工艺中就有可能产生点缺陷和线缺陷等。为了及早对产品的质量进行检测,液晶测试仪器成为所有的液晶模块生产厂家的必备设备。针对此问题,设计了可以快速检查TFT模块的点缺陷和线缺陷的简易测试仪器,该测试仪主要应用于中小尺寸TFT LCD模块的快速检测。测试仪最主要的部分是为模块提供测试信号的信号源

 

1 TFT驱动测试原理

 

TFTLCD最可能产生缺陷的位置是在电路层,TFT阵列层。TFT实际功能如同一个开关,液晶如同一个电容,当开关闭合的时候,显示信号写入液晶电容Cls,断开的时候信号保持在液晶上。存储电容Cs的作用就是让充电电压保持到下一次更新画面。图1是单一TFT等效电路图。扫描线控制TFT的栅极,来决定TFT是否选通,源信号线连接TFT的源极对液晶电容进行充电。当加在G极和S极的电压Vgs大于阈值电压Vth时,源极和漏极导通,液晶电容充电,达到显示效果;当Vgs小于阈值电压Vth的时候,TFT开关断开,液晶电容保持充电电压到下一扫描周期。

       

 

1 单一TFT等效电路图

若液晶分子长时间固定在某个电压下不变,会破坏液晶分子的旋转特性。当显示要求同一灰度的时候,可将显示电压相对于Vcom分成相同压差的正负极性,这样不管是加在液晶上的电压是正还是负,虽然液晶分子的旋转方向不同,但显示的灰度是一样的。当要求显示同一灰度的时候,通过正负电压的交替,达到显示要求,也可避免对液晶分子的破坏。目前,为了避免闪烁现象和减少功耗,大多数TFT LCD采用点翻转固定Vcom电压的驱动方式。采用固定Vcom电压方式的时候要注意馈通电压的影响。对于固定Vcom电压的驱动方式,馈通电压的形成主要来源于栅极驱动信号的变化,此变化经存储电容Cs和栅极与漏极之间的寄生电容Cgd反馈到显示电极上,影响显示电极电压正确性。为避免此影响,需要修正Vcom电压,使之对馈通电压有所补偿。图2是一般TFT模块采用的二阶驱动原理示意图。

2 二阶驱动原理

2 TFT点缺陷和线缺陷产生机理TFT的结构以及驱动原理,只要分时地选通各个行的栅极,使得源信号对显示电极充电,就可以达到显示效果。但由于生产或其它各种原因,可能出现某行TFT或连接TFT栅极的驱动信号线有缺陷,不能对栅极加以正确的驱动信号,造成整个行的栅极不能控制,因而信号加不到显示电极上,通过偏振片观察的时候会发现某行有亮线,即所谓的线缺陷;当存储电容或液晶电容存在缺陷时,就可能使某个液晶电容不能充电或充电后保持的时间不足,造成显示电极上电压信号的误差,观察的时候会发现某个亮点,即所谓的点缺陷。检测线缺陷和点缺陷实际就是在液晶模块上加以变化的驱动信号,通过偏振片观察其结果来快速判断液晶模块的质量[1-2]

根据

 

3 测试信号的要求

为了满足对不同中小尺寸TFT模块的测试要求,测试信号源一般提供源极信号、栅极信号、栅极控制信号和公共地信号。栅极控制信号一般是直流信号, 0~25V可连续调节,此信号一般接模块的GG(此端为测试选通使能);栅极信号幅值-15~25V可以连续调节,频率10~100Hz可变,占空比1/1 000~1/2可调,此信号接TFT的栅极;源极信号幅值±0.5V~±5V可调,频率与栅极信号相同,占空比可以调节,此信号与栅极信号相比有一个滞后时间,但高电平时间要比栅极信号保持时间长,并且具有16级灰度的变化;地信号是为液晶屏提供的一个公共端。

 

 

4 测试信号的产生设计

为实现对TFT LCD的测试,就要实现上述的信号。其中栅极控制信号和公共地信号很容易实现,在此不作介绍。栅极和源极信号主要通过FPGA来实现。本文中主要介绍实现要求的频率和占空比,以及对灰度的控制。栅极信号的产生主要在FPGA中通过对给定的时钟进行分频计数的方式实现,此信号作为外部模拟开关MAX4622的选通信号,MAX4622的两路输入信号进行选通。MAX4622的输入信号的幅值可以调节,分别在-5~0V0~10V之间调节,MAX4622的输出信号经电路放大后作为输出,即可满足栅极信号的要求[3]。栅极信号在FPGA中的形成过程如下:根据接收到的所要实现的频率和占空比的数值,通过公式计算出输入FPGA的数值,规定fclk为输入时钟频率,要实现的频率为freq,占空比为duty,则有:

N =fclk/(freq×duty)

FPGA根据N对时钟脉冲分频计数,分为偶数和奇数的两种情况,N为偶数时比较容易实现,N为奇数时,需要设置两个分频器,分别对时钟脉冲的上升和下降沿计数,再将这两个结果作逻辑或处理,即可得到结果为(freq×duty)的方波脉冲,再对其进行值为duty的不等分频处理,所得到的就是频率和占空比满足要求的结果。图3是仿真结果,其中m为所要实现的频率freq,n为占空比, temp2为频率为freq×duty的方波信号, clk_gate就是最终的栅极信号。其中时钟clk2MHz,m10Hz,n1/20

 

3 栅极信号

源极信号是通过16路模拟开关AD7506和模拟开关MAX4622产生的。AD7506161的模拟转换开关,通过4位地址输入值选择1路输出。AD750616路输入将+5V16等分,每路通过不同的电压值代表不同的灰度等级。其选择信号也是由FPGA产生的,实现161的输出。该输出经过正向跟随和反向放大电路作为另一个MAX4622的一组开关(COM1COM3)的输入,FPGA产生的选通信号Sel1,控制正向电压或反向电压的输出,此输出和公共地又作为MAX4622另一组开关(COM2COM4)的输入,Sel2选通,就可得到具有16个不同正负幅值和脉冲宽度均可调的信号,此信号经过运放电路的放大即为所要求的源极信号。其中具体的实现电路如图4所示。

 

 

 

4 源极信号的产生电路图

 

其中Sel1是栅极信号经过D触发器而形成的,所以具有一定的滞后。Sel2是栅极信号经过FPGA内部的一个单稳态触发器而实现的, FPGA形成的单稳态触发器由两个D触发器和一个计数器组成,其中cp为上述的(freq×duty)方波,tr为栅极信号, Sel2即为输出信号,其高电平的时间可以根据实际需要在一定范围内随意设定,如图5所示。这样,代表不同灰度等级的交变信号就可加在TFT的源极端

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭