当前位置:首页 > 工业控制 > 电子设计自动化
[导读]编写属于自己PCB设计规则检查器具有很多优点,尽管设计检查器并不那么简单,但也并非高不可攀,因为任何熟悉现有编程或脚本语言设计人员完全能够设计检查器,这项工作好处是不可估量。

编写属于自己PCB设计规则检查器具有很多优点,尽管设计检查器并不那么简单,但也并非高不可攀,因为任何熟悉现有编程或脚本语言设计人员完全能够设计检查器,这项工作好处是不可估量。

然而,市场销售通用工具通常不具备足够灵活性以满足特定设计需要。因此,客户必须将新特性需求反映给DRC工具开发商,而这通常需要耗费一定资金和时 间,尤其当需求不断更新时。幸运是,大多数工具开发商均可为客户提供编写属于自己DRC以满足特定需求便捷方法。但是,这种具有强大功能工具尚未得到广泛 认同或使用。本文提供了利用DRC工具获取最大收益实用指南。

由于DRC必须遍历 PCB设计整个电路图,包括每个符号、每个引脚、每个网路、每种属性,如有必要还能创建数目不限“附属”文件。如4.0节所述,DRC可以标示出任何违反设计规则细微偏差。例如其中一个附属文件就可能包含设计用到全部去耦电容。如果电容数低于或高于期望值,就将在可能出现电源线dv/dt问题地方标注红色记号[1]。这些附属文件或许必不可少,但并非任何商用DRC工具都一定能创建这些文件。

DRC另一优势是便于更新,以适应新设计特性(如那些可能影响设计规则新特性)需要。而且,一旦在该领域获得充分经验,那么还能实现许多其它功能。

例如,如果能编写属于自己DRC,那么就能编写属于自己物料清单(BOM)创建工具,这样就能更好地处理特定用户需求,如如何获取本身不属于电路图数据库一部分器件“额外硬件”(如插座、散热装置或螺丝刀)。或者设计人员可以编写属于自己Verilog网表分析器,该分析器在设计环境下具有充分灵活度,如怎样获取适用于特定器件Verilog模型或时间文件。实际上,由于DRC遍历了整个设计电路图,因此可以收集全部有效信息以输出PCB设计Verilog网表分析所需仿真和/或BOM。

麦斯艾姆(massembly)贴片知识课堂,用通俗的文字介绍专业贴片知识。麦斯艾姆科技,全国首家PCB(麦斯艾姆知识课堂)样板打板,元器件代采购,及贴片的一站式服务提供者!

在不提供任何程序代码前提下讨论这些话题实在有些牵强,为此,我们将以一种电路图获取工具为例进行说明。本文采用了Mentor Graphics公司开发附属于PADS-Designer 产品线ViewDraw工具。此外,我们还采用了ViewBase工具,这是一个可被调用并对ViewDraw数据库进行存取操作简化C例行程序库。利用 ViewBase工具,设计人员可以轻松地采用C/C 语言为ViewDraw编写完整且高效DRC工具[2] [3]。需要注意是,这里讨论基本原则同样适用于任何其它PCB电路图工具。

输入文件

除了电路图数据库,DRC还需要一些可以描述特定情况处理输入文件,如自动连接到电源平面合法电源网路名称。例如,如果电源网路名为POWER,那么电 源平面将采用后端封装设备(如适用于ViewDrawpcbfwd)自动连接到电源平面。下面给出了输入文件列表,这些文件必须放在固定全局位置,这样 DRC就能自动找到并读取,然后在运行时将这些信息保存在DRC内部。

* 文件legal_pwr_net_name可选,该文件包含POWER信号全部合法网路名称,如VCC、V3_3P和VDD。在PCB布局/路由工具中, 需要对名称大小写进行区分,一般VCC并不等同于Vcc或vcc。VCC可以是5.0V电源,而V3_3P则可以是3.3V电源。 * 文件legal_pwr_net_name可选,因为后端封装设备配置文件通常必须包含一组合法电源线网路名称。如果采用Cadence设计系统公司Allegro布线工具,那么pcbfwd文件名则为allegro.cfg并且具有如下入口参数:

接地:VSS CGND GND GROUND

电源:VCC VDD VEE V3_3P V2_5P 5V 12V

如果DRC可以直接读取allegro.cfg文件,而非legal_pwr_net_name,那么将能得到更好结果(即引入误差几率较小)。

一些符号必须具有外接电源线引脚,因为这些符号并不连接到常规电源线层。例如,ECL器件VCC引脚要么连接到VCC,要么连接到GROUND;其VEE引脚则可连接到GROUND或-5.0V平面。此外,电源线引脚在到达电源线层之前也可连接到滤波器。

电源线引脚通常并不外接到器件符号上,相反,该符号一个属性(这里称为SIGNAL)描述了哪个引脚是电源引脚或接地引脚并描述引脚应当连接网络名称。

SIGNAL = VCC:10

SIGNAL = GROUND:20

DRC可读取该属性并确保网路名称保存在legal_pwr_net_name文件中,如果legal_pwr_net_name中不包含网路名称,那么电源引脚将不会连接到电源平面,而这个问题确实非常严重。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭