当前位置:首页 > 工业控制 > 电子设计自动化
[导读]"对于移动机器人的开发来说,其大小,重量及性能都非常重要,因此坚固的模块化CompactRIO系统非常适合用于开发。 LabVIEW和NI硬件之间定义良好的兼容性显着地减少了开发者执行系统集成的时间和精力。" - Pei-Chun Li

"对于移动机器人的开发来说,其大小,重量及性能都非常重要,因此坚固的模块化CompactRIO系统非常适合用于开发。 LabVIEW和NI硬件之间定义良好的兼容性显着地减少了开发者执行系统集成的时间和精力。"

- Pei-Chun Lin, Department of Mechanical Engineering, National Taiwan University

挑战:

开发一个腿轮混合式移动机器人,使其能在平坦的地势上快速流畅地行驶,也可在天然或人工不平坦的地形上顺利通过。

解决方案:

使用NI LabVIEW和CompactRIO以及各种I / O模块将机械、电子及软件开发快速集成到功能型机器人原型。

腿轮混合式移动机器人

项目背景

腿部和车轮这两种方法在地面运动平台上被广泛采用。 经过漫长的演变过程,大多数陆地动物的腿部都灵活有力,并能够快速顺畅地在不平坦的天然地形上奔驰。 在另一方面,人类发明了平地上专用的运动车轮,其出色的功率效率和在平地上高速的流畅运行是腿部运动无法比拟的。

由此,来自国立台湾大学的仿生机器人实验室(BioRoLa)团队致力于设计一个腿轮混合式机器人,它结合了车轮和腿部的移动性,在平坦和恶劣环境下都能为室内室外行走提供一个移动平台。

机械设计

大多数混合动力平台上不同的轮子和腿都有不同的装置和激励器,相比这些平台,这款名为Quattroped的腿轮混合式移动机器人采用了一种转换机制,可将自身特定的一部分变形成为一个轮子或一条腿。 从几何角度来说,一个轮子通常有一个圆形轮圈,而旋转轴则位于轮圈中间。 轮圈与地面接触,而旋转轴与机器人身体上的一点相连,此点就是“髋关节”。 在一般情况下,轮式移动时轮子在平地上运动并不断旋转,车轮与地面的接触点就位于髋关节下的一定距离处。相对而言,用腿移动时腿部以周期性方式运动,在髋关节和地面接触点之间没有特定的几何配置;因此腿部在运动中的相对位置具有周期性频繁变化的特点。

基于这一观察发现,将髋关节移出圆形轮圈中心并将连续运动模式改为其他运动模式,即能达到轮模式向腿模式的转换。 这激发了我们去设计一种能直接控制圆形轮圈和髋关节的相对位置的模式,从而它既能进行轮运动又能进行腿运动。 由于圆形轮圈是一个二维的对象,实现这一目标的最直接的方法是再增加一个自由度(DOF),沿着运动方向调节髋关节相对圆形轮圈的位置。 两个自由度的运动也互相形成直角。 此外,无论是轮模式还是腿模式都能有效运行同一组的驱动功率。

控制平台结构

机电一体化

我们采用NICompactRIO嵌入式控制系统作为机器人控制器,它包括一个400MHz的实时处理器和3M现场可编程门阵列(FPGA)。 FPGA直接连接NI C系列I/O模块,这些模块能从载板传感器和激励器获得数据。 对于模拟I/O我们采用NI 9205和NI 9264I/O模块,对于数字I/O采用NI 9401和NI 9403I/O模块。FPGA与实时处理器相连,并通过IEEE 802.11无线方式与电脑进行通讯。

机器人传感器包括:马达和功率放大器上用于健康监测的温度传感器;用于电源管理的电压和电流测量传感器;用于腿轮配置校准的霍尔(Hall)效应传感器;用于身体状态测量的6轴惯性制导仪和2轴测斜仪;用于离地间隙测量的3个红外距离传感器。全球定位系统、视觉和激光测距仪等各种传感器也被用于提高机器人的感应能力。机器人上的激励器包含8个用于驱动的直流有刷电机,2个用于前腿车轮转动的高扭矩RC伺服电机,用于轮腿切换的四个小型RC伺服电机和四个小型直流有刷电机。

FPGA程序框图

软件

三个运行LabVIEW 的计算核心(PC,实时系统和FPGA)负责不同的任务。 用户操作PC,将高级指令(如机器人应该以轮模式还是腿模式运行)发送到NI CompactRIO控制器。控制器以1kHz的循环速率运行,将关于机器人健康的重要信息发送回来,并在PC上记录状态数据。 机器人软件架构包括各种状态机,每个状态代表一种机器人行为。 其他需要高速信号交换的算法以10 kHz的循环率在FPGA上运行。 包括直流电动机、编码器读数以及基于PWM的RC伺服命令的比例-积分-微分(PID)控制。

机器人通电后,我们进行电机校准,定义机器人每条腿轮上两个活跃自由度的完全几何配置。 通过匹配安装在机器人身体上的霍尔效应传感器和安装在腿轮内部磁铁的相对位置实现校准。 我们可以在腿模式或轮模式下操作经校准过的机器人,这取决于当前RIM配置(即为车轮或半圈腿模式)。 另外,我们也可以通过腿轮转换来改变腿轮配置。 机器人轮模式下的行为包括站立、行驶和入座。 站立和入座为两个瞬态状态,用以过度最初地面配置和行驶行为。 在行驶行为中,前进速度和转弯速率都连续可调。 同样,当机器人在腿模式下运作时,站立和入座行为也属于瞬时状态。 站立起来后的机器人可以执行各种行为,包括步行、小跑、跨步、跨越障碍和爬楼梯。

NI软硬件的益处

在一般情况下,机器人属于高自由度的复杂系统。 机器人的成功发展需要花费时间和精力来妥善整合各种机械、电气和计算机系统。 来自国立台湾大学BioRoLa团队,主要由拥有机械工程背景的学生组成,他们需要一个可靠、模块化、易于使用及良好集成的平台。

经过广泛的研究,我们发现NI产品能为我们的应用程序提供最佳解决方案,原因如下: LabVIEW为非编程背景的学生提供了直观的图形化流程图表示方法,可以让他们轻松建立过程图并作为解决方案,然后再将过程图转化为软件。 能在Windows,RTOS和基于FPGA的目标上使用相同的图形化开发环境也极其有帮助。 由于开发控制器软件时我们不必花时间学习底层的编程语法,因而能够花更多的时间专注于我们设计的机械部分。

“对于移动机器人的开发来说,其大小,重量及性能都非常重要,因此坚固的模块化CompactRIO系统非常适合用于开发。 LabVIEW和NI硬件之间定义良好的兼容性显着地减少了开发者执行系统集成的时间和精力。”

未来计划

凭借NI LabVIEW图形化系统设计和NI CompactRIO,一支机械工程学生团队设计出了一个拥有优雅软件构造的复杂机电一体化系统,对于今后的进一步开发扩展也很方便。 在硬件方面,我们正在将各种传感器融合到当前的机电化系统中,以提高机器人的感应能力。 在动作方面,我们正在完善和开发具有闭环控制功能的腿部行为,以提高机器人在各种具有挑战性的地形上的移动能力,并开发其腿部动态步态。

0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭