当前位置:首页 > 工业控制 > 电子设计自动化
[导读]随着工艺尺度不断缩小,器件常常需要多个电源。为了减小功耗和最大限度地提高性能,器件的核心部分一般趋向于在低电压下工作。为了与传统的器件接口,或与现有的I/O标准配合,I/O接口的工作电平往往与核心部分不同,

随着工艺尺度不断缩小,器件常常需要多个电源。为了减小功耗和最大限度地提高性能,器件的核心部分一般趋向于在低电压下工作。为了与传统的器件接口,或与现有的I/O标准配合,I/O接口的工作电平往往与核心部分不同,一般都高于核心部分的工作电压。器件通常支持电平各不相同 (1.8V、2.5V 或 3.3V)的多个I/O组件。为能重新配置器件或对器件重新编程,通常还需要支持另外一个电源。显然,这些电源间相互关联,以及电源数量的增加,会大大增加板级电源管理的复杂性。

采用现场可编程门阵列 (FPGA)、数字信号处理器 (DSP) 和专用集成电路 (ASIC) 的设计可能需要4到5个,甚至更多的电源,需要按照预先设定的顺序和电压攀升率完成上电,从而避免诸如闭锁、涌流或I/O口争夺等问题。此外,许多应用都要求上电顺序和电压攀升率可调节,以适应不同的应用情况。

为了满足这些应用要求,功率系统管理部分必须具备上电即用的能力,这样,它才能对多个模拟电压输入进行采样和监控。功率系统的管理器要基于系统需求,以适当的电压攀升率顺序启动多个电源。该管理器还需具灵活性,能调节出不同的上电顺序和电压攀升率,并记住上电顺序和电压攀升率控制中使用的参数。

具有上电即用功能的混合信号FPGA在这种类型的功率管理控制上具有很多优势。这种FPGA在单芯片中集成了大容量的嵌入 Flash内存块、可编程逻辑和可配置模拟构件。由于集成了大容量的嵌入Flash内存块,因此能让设计人员实现众多的任务,包括记录系统历史运行性能、更新工作参数、监视系统参数以预见可能发生的故障 (即预报功能)、EEPROM仿真,以及启动代码存储。除电源管理外,这种器件还能被用于控制开关电压的攀升率。这种FPGA对模拟系统进行适当配置,可实现对多达30路模拟信号进行采样和监视;同时利用栅极驱动电流能控制多个电源的上电顺序和电压攀升率的可编程特性,控制多达10个栅极驱动电路。

利用混合信号 FPGA (如 Actel 的 Fusion PSC) 的这种可编程栅极驱动电路来控制电源电压的攀升率,四线模拟 I/O 结构 (参见图 1) 是个关键。四线模拟 I/O 由 4 个 I/O 端构成,包括模拟电压输入 (AV)、模拟电流输入 (AC)、模拟温度输入 (AT),以及单栅极驱动输出 (AG)。AV、AC 和 AT 用于在将模拟信号送到可配置的 12 位逐次逼近寄存器 (SAR) 实现的模数转换器 (ADC) 前,对信号进行预调。四线模拟输入的电压承受能力达 12 V ± 10%。该四线模拟结构在预定标值、正负电压范围,以及 I/O 功能上有很大的可配置范围。

图1:四线模拟I/O结构

如果设计人员能采用这种四线模拟结构和ADC,混合信号FPGA就可为实现上电顺序管理和电压攀升率控制提供智能、简洁及灵活的解决方案。这种方案不需要外接电阻网络、比较电路或MOSFET驱动电路之类的部件,因而能大幅节省板卡空间和降低系统成本。而且,还能实现真正的上电顺序管理,且不依赖于主电源的上升时间。

要实现对上电顺序和上电电压攀升率的控制,可配置混合信号FPGA,使其不断地监视各个电源。该FPGA能根据用户定义的条件来开启功率MOSFET管,为负载提供所需的功率。用户可利用其电压监视功能,及预先定义的电源开启条件,在另一电源达到某一电平时开启该电源,或在另一电源开启后经一定延迟后再开启该电源。同时,用户还可选择栅极驱动电流来控制各个电源的上电攀升率;这个功能是针对外部的P型或N型MOSFET而设计。

图1所示为典型的功率控制配置。在该配置中,AV和AC代表供电侧或电源,AT在负载侧,并有一个由AG输出控制的外接MOSFET来控制供给负载的功率。AV监视电源电压。

一旦电源达到用户设定的电平并稳定下来,就可用AG来开启MOSFET,使负载侧上电。栅极驱动是可配置的电流源,需要有一个上拉电阻或下拉电阻 (见图2)。AG和外接功率MOSFET决定负载侧电源的开关电压攀升率。我们将通过下面给出的例子来说明如何确定和控制这个攀升率。

点此下载全文PDF资料:用混合信号FPGA控制电压攀升率.pdf



来源:笨笨尉0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭