当前位置:首页 > 工业控制 > 电子设计自动化
[导读]作者:王姗姗,华清远见嵌入式学院讲师。 exec用被执行的程序完全替换调用它的程序的影像。fork创建一个新的进程就产生了一个新的PID,exec启动一个新程序,替换原有的进程,因此这个新的被exec执行的进程的PID不会改

作者:王姗姗,华清远见嵌入式学院讲师。

exec用被执行的程序完全替换调用它的程序的影像。fork创建一个新的进程就产生了一个新的PID,exec启动一个新程序,替换原有的进程,因此这个新的被exec执行的进程的PID不会改变,和调用exec函数的进程一样。

下面来看下exec函数族:

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ..., char *const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *path, char *const argv[], char *const envp[]);

exec函数族装入并运行程序pathname,并将参数arg0(arg1,arg2,argv[],envp[])传递给子程序,出错返回-1。在exec函数族中,后缀l、v、p、e添加到exec后,所指定的函数将具有某种操作能力有后缀:


其中只有execve是真正意义上的系统调用,其它都是在此基础上经过包装的库函数。

我们来看下面的一个实例:

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

int main(int argc,char *argv[],char *envp[])

{

char *arg[]={"ls","-a",NULL};

if(fork()==0)

{

printf("execl...........n");

if(execl("/bin/ls","ls","-a",NULL)<0)

{

fprintf(stderr,"execl failed:%s",strerror(errno));

return -1;

}

}

if(fork()==0)

{

printf("execv...........n");

if(execv("/bin/ls",arg)<0)

{

fprintf(stderr,"execl failed:%sn",strerror(errno));

return -1;

}

}

if(fork()==0)

{

printf("execlp...........n");

if(execlp("ls","ls","-a",NULL)<0)

{

fprintf(stderr,"execl failed:%s",strerror(errno));

return -1;

}

}

if(fork()==0)

{

printf("execvp...........n");

if(execvp("ls",arg)<0)

{

fprintf(stderr,"execl failed:%sn",strerror(errno));

return -1;

}

}

if(fork()==0)

{

printf("execle...........n");

if(execle("/bin/ls","ls","-a",NULL,envp)<0)

{

fprintf(stderr,"execl failed:%s",strerror(errno));

return -1;

}

}

if(fork()==0)

{

printf("execve...........n");

if(execve("/bin/ls",arg,envp)<0)

{

fprintf(stderr,"execl failed:%sn",strerror(errno));

return -1;

}

}

return 0;

}

程序里调用了ls这个Linux常用的系统命令。

由于各个子进程执行的顺序无法控制,所以有可能出现一个比较混乱的输出--各子进程打印的结果交杂在一起,而不是严格按照程序中列出的次序。

编译并运行:


下面我们来分析下所写的程序。
其实我们留心看一下这6个函数,可以发现前3个函数都是以execl开头的,后3个都是以execv开头的。

首先来比较前两个函数execv和execl。execv开头的函数是把参数以"char *argv[]"这样的形式传递命令行参数。而execl开头的函数采用了我们更容易习惯的方式,把参数一个一个列出来,然后以一个NULL表示结束,也可以写成(char *)0。

其次紧跟着的2个以p结尾的函数execlp和execvp。与其他几个函数相比,除execlp和execvp之外的4个函数都要求,它们的第1个参数path必须是一个完整的路径,如"/bin/ls";而execlp和execvp的第1个参数file可以简单到仅仅是一个文件名,如"ls",这两个函数可以自动到环境变量PATH制定的目录里去寻找。

最后两个函数execle和execve,都使用了char *envp[]来传递环境变量。在全部6个函数中,只有execle和execve需要传递环境变量,其它的4个函数都没有这个参数,这并不意味着它们不传递环境变量,这4个函数将把默认的环境变量不做任何修改地传给被执行的应用程序。而execle和execve会用指定的环境变量去替代默认的那些。

最后要强调一点,大家在平时的编程中,如果用到了exec函数族,一定记得要加错误判断语句。因为与其他系统调用比起来,exec很容易受伤,被执行文件的位置,权限等很多因素都能导致该调用的失败。最常见的错误是:

1. 找不到文件或路径,此时errno被设置为ENOENT;

2. 数组argv和envp忘记用NULL结束,此时errno被设置为EFAULT;

3. 没有对要执行文件的运行权限,此时errno被设置为EACCES。

“本文由华清远见http://www.embedu.org/index.htm提供”



来源:华清远见11次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭