当前位置:首页 > 工业控制 > 电子设计自动化
[导读]摘要:本文描述了一个基于可编程逻辑器件的全彩LED显示系统的设计的过程,这个系统能够基于硬件产生LED更多颜色灰度。详细分析了其工作原理,并依据其原理,设计出了基于FPGA 的控制电路。 1 引言 LED 的发展已过了几十

摘要:本文描述了一个基于可编程逻辑器件的全彩LED显示系统的设计的过程,这个系统能够基于硬件产生LED更多颜色灰度。详细分析了其工作原理,并依据其原理,设计出了基于FPGA 的控制电路。

1 引言

LED 的发展已过了几十年了,它现在的技术也相当成熟了。它有很宽的可视角,并且能够 显示图像、数字、视频,还能够通过红绿篮三种LED 组合成任一颜色系统,但是不推荐在 小显示屏上显示视频。典型应用是在商场、高速公路、大型体育场和白天日照下的舞台[1]。

我们都知道,由PN 结构成的LED 需要用直流电源驱动发出其颜色,改变通过PN 结上 的电流达到显示颜色亮度的变化。每个显示板上的LED 都是被恒流源产生的可控电流单独 直接控制,虽然一个LED 颜色灰度容易产生,但是大量LED 组成的LED 显示屏就需要一个 非常复杂的控制系统来控制。本文的目的是实现这个基于FPGA 的具有高刷新率的全彩LED 显示控制系统。本文介绍了LED 显示系统中三基色发光管同时产生灰度的工作原理,也描述 了基于FPGA 的 LED 显示系统模型在细节上的实现[2]。

2 LED 显示面板的工作原理

根据驱动 LED 的工作原理LED 显示屏有静态、虚拟、扫描之分,那么对应的LED 显示控制系统也不同。本文介绍的是适合扫描屏的LED 控制系统。

目前,许多LED 显示面阵板是利用8*8 的LED 矩阵块拼接起来,这有益于PCB 的设 计和节省空间,在本文的研究中就是使用这样的LED 面阵板[3]。如图1 所示,由8 块8*8 的矩阵块组成,三色LED 点阵利用每行的阴极作为公共端,行的选通是通过3-8 译码器驱 动NPN 三极管来控制的,并且任一时刻只有一行被Ri 选通;每列有3 路输入信号Rc、Gc、 Bc 分别单独控制每列的红、绿、蓝LED,每种颜色有8 个8 位移位寄存器(74HC595)提 供恒流去控制列。为了便于读图,在图中没画出LED 和驱动芯片间的限流电阻。


很明显,能得到的颜色值仅仅是红、绿、蓝三种颜色组成的,颜色灰度实际上是依靠改 变颜色亮度值产生的,颜色亮度的控制是通过驱动LED 像素点在一周期内总的导通时间来 决定的。为了产生颜色灰度需要对LED 像素值进行重新分配,这需要在控制系统里实现对 同一位面的数据进行组合,然后发送到LED 面阵板。

3 基于可编程逻辑器件的LED 显示控制器

LED 显示屏为了获得更高的亮度等级,显示控制器必须能够在一个可接受的周期内刷 新整个LED 屏,如果这个不能达到,闪变效应就会影响观众。微处理器和微控制器在普通 的控制方面是很强的芯片,但是它不太适合控制带合适亮度等级和高刷新率的LED 显示屏。 所以使用基于可编程逻辑器件的控制器来实现是一个很好的选择 [4]。

如图 2 所示的结构,LED 显示控制由器由LEDINTERFACE、BUFFERUPDATA 和 VIDEORAM 模块组成[5]。LEDINTERFACE 和BUFFERUPDATA 两个模块共用一个SRAM 存储器,它类似于一双通道存储器。以下几个部分详细说明这几个模块。


3.1 LEDINTERFACE 模块

LEDINTERFACE 模块是负责控制图1 所示的LED 点阵的颜色显示,如图3 所示为 LEDINTERFACE 模块的状态机的状态图。它能够很方便的表现状态转换和数据流动,最重 要的是一个状态图能够简单的修改成VHDL 程序。


从这图中看出,LEDINTERFACE 模块的初始化状态是INIT_SIGNALS,它初始化所有 涉及到LED 显示屏上的信号,然后准备转换到SET_PIXEL_ADDRESS 状态,这个状态计 算输出数据缓冲器中的地址(VIDEORAM 的地址),在READ_PIXEL 状态读出数据。注意, READ_PIXEL 不仅是取数据而且决定当前的LED 状态是否需要去置位或清除有关像素数据 的亮度值和当前位面。READ_PIXEL 状态利用一个PIXCOLOR 表,如表1 所示,这个表存 储的是像素颜色值和亮度的关联数据。用作重新得到LED 状态的参量是像素数据DataR、 DataG、DataB、Plane,在不增加显示缓冲区的情况下,把一个像素的颜色值直接转换成LED 的亮度等级,不仅是一个简单的方法,而且相比较以前的方法能减少硬件复杂度和存储器的 使用。

下面举一像素颜色转换的例子,说明这个方法的工作过程。例如首先位面值是‘0’,1 个点的像素值是是(4,0,2),分别是RED,GREEN,BLUE,在READ_PIXEL 期间,这 些像素值同时从VIDEORAM 中取出存到DataInR,DataInG,DataInB,再通过查表1 可以 得到,位面值为‘0’时的LED 状态(RI,GI,BI)即第PIXCOLORE 第一位(1,0,1); 位面值是‘1’时即第二位(1,0,1);位面值‘3’时即第三位(1,0,0)。很显然,32 个位面值都取完后,这个像素点的RGB 发光管在这个周期的导通时间分别是4/32,0/32, 2/32,实际上由于LED 面板是1/8 扫描的,RGB 发光管的导通时间分别是4/256,0/256, 2/256,这个过程产生了LED 的不同灰度[6]。


一旦 R、G、B 状态定下来,状态机的下两个状态ACTIVE_CLK 和INACTIVE_CLK 把 RDi、GDi、BDi 里的数据移位到LED 面板上,这些操作被重复直到当前所有LED 数据分 配完,重复次数由一个计数器控制,计数器的最大值是LED 面板每行的LED 数。

当一行所有的 LED 数据分配完成后,状态机进入OUT_ROW_BUS 状态,激活LED 显 示面板的当前行,并更新cROW 指向下一行,DELAY 状态是为了能够在退出更新状态以前, 在扫描延时的控制下使能行一段周期。多路扫描速率由SCAN_DELAY 控制,在更新行期间 (cROW=cROW+1),如果cROW 小于8,则继续回到SET_PIXEL_ADDRESS 状态开始扫描 下一行。另外,,如果8 行全部扫描完成,它将进到ADVANCE_PLANE 状态。从这个状态 图可以看出,颜色位面是32 个,总共能够显示的颜色是32*32*32=32768 色。

3.2 BUFFERUPDATA 模块

BUFFERUPDATA 模块是作视频源信号和VIDEOSRAM 的接口部分。BUFFERUPDATA 设计了只接收24 位RGB 数据格式的信号,这种格式的信号可以很容易的从标准的视频源 信号转换过来,且这种转换模块需要带数据缓冲区。

除了24 位颜色数据总线,BUFFERUPDATA 模块还增加了2 个信号:RDB_FULL 和 RGB_RD。RGB_FULL 是指示RGB 视频源缓冲区中至少有一个像素值可以读取, BUFFERUPDATA 模块去使能RGB_RD 信号,然后通过24 位数据总线去读取视频源缓冲区 中的值。如图3 所示,用有限状态机来描述这个模块。


从图 3 可以看出,这个BUFFERUPDATA 模块的初始状态是IDLE,所有有关信号都在 这个状态被初始化,并且检测RGB_FULL 信号状态;从IDLE 状态到ACF_RD 是通过 RGB-FULL 信号来激励的;在ACT_RD 和INACT_RD 状态为了得到RGB 数据强制 BUFFERUPDATA 模块产生RGB-RD 信号。RGB-RD 有效的时间是DELAY 的值来控制的, DELAY 的值是在ACD-RD 状态重复的时钟周期数。


接收完数据后,BUFFERUPDATA 模块没有立即把数据存到VIDEORAM 中,而是检查 MemBusy 信号的状态,为了保证VIDEORAM 模块可操作,即没有被LEDINTERFACE 模 块占用;当MemBusy 信号无效时,BUFFERUPDATA 模块就把得到的RGB 数据存到相应 的VIDEORAM 地址中,每个像素值的读取/存储过程的最终状态是回到IDLE 状态。

3.3 VIDEORAM 模块的结构

前面提到,VIEDORAM 模块是LEDINTERFACE 模块和BUFFERUPDATA 模块和共用 模块。实际上一个双端口RAM 是很容易得到的,这个模块可能使用一个静态RAM 来实现。

在FPGA 里只需综合相对简单的SRAM 的接口模块和另外两个模块,这个接口模块即 VIDEORAM 模块,事实上这不是一个真正的双端口模块。如图4 所示为VIDEORAM 内部 结构图。很容易看出,这个模块由以下几个部分组成:一个2 选1 的8 位地址选择器、一个 24 位双向三态数据总线,一个2 选1 的Wr 信号选择器。

4 FPGA 的功能实现

FPGA内部寄存器资源比较丰富,适合做同步时序电路较多的设计。FPGA是选用Xilinx 公司的有5万门的XC2S50,它有1728个逻辑单元(LC),384 个可配置逻辑快( CLB) , 32Kbit 的块RAM, 176 个可用的I/O 口。以上的几个功能模块都是在Xilinx 的ISE 平台上实现的, 三个模块共消耗62%的资源[7]。

5 结束语

本文作者的创新点:提出了一种基于FPGA 的LED 扫描屏控制系统的实现方案,通过 硬件和软件的辅助设计,完全实现了对LED 显示屏的扫描控制。基于FPGA 的硬件设计大 大降低了电路系统的复杂性,提高了整个系统的开发效率。



参考文献:

[1].PCB datasheethttp://www.dzsc.com/datasheet/PCB+_1201640.html.
[2].74HC595datasheethttp://www.dzsc.com/datasheet/74HC595_1133522.html.
[3].REDdatasheethttp://www.dzsc.com/datasheet/RED_1190298.html.
[4].XC2S50datasheethttp://www.dzsc.com/datasheet/XC2S50_1096648.html.


来源:xinxin0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为增进大家对LED显示屏的认识,本文将对节能LED显示屏的设计予以介绍。

关键字: LED 指数 显示屏

为增进大家对LED显示屏的认识,本文将对LED显示屏的部件组成、LED显示屏的选型技巧予以介绍。

关键字: LED 指数 显示屏

LED显示屏的身影。为增进大家对LED显示屏的认识,本文将对LED灯珠对LED显示屏的影响予以介绍。

关键字: LED 指数 显示屏

LED显示屏将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: LED 显示屏

今天,小编将在这篇文章中为大家带来led显示屏的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: LED 显示屏 LED显示屏

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC

LED(Light Emitting Diode)与LCD(Liquid Crystal Display)是当今显示技术领域的两大重要分支,各自凭借独特的优势在消费电子、广告传媒、工业控制、家用电器等多个领域占据着主导地...

关键字: LED LCD

在现代流程工业生产中,生产工艺相关的运行参数,如温度、液位、压力、流量等,都是采用仪表进行测量检测,并根据仪表的测量结果通过控制阀门、泵等执行机构使这些工艺运行参数处于要求的范围内以满足工艺生产的需要。目前,在先进的工厂...

关键字: 故障树 控制系统

作为温度依赖性低、广角发射且光线均匀的光源,有助于汽车驾驶辅助技术提升

关键字: VCSEL LED 红外光源

爱德万测试集团 (公司总部:东京都千代田区、代表董事:Douglas Lefever、以下简称为“爱德万测试”) 与东丽工程株式会社 (总公司:东京都中央区、代表董事总经理:岩出卓、以下简称为“东丽工程”) 此番宣布,签...

关键字: LED 显示屏
关闭
关闭