当前位置:首页 > 工业控制 > 电子设计自动化
[导读]多基板的设计性能大多数与单基板或双基板类似,那就是注意避免使太多的电路塞满太小的空间,从而造成不切实际的公差、高的内层容量、甚至可能危及产品质量的安全。因此,性能规范应该考虑内层线路的热冲击、绝缘电阻

多基板的设计性能大多数与单基板或双基板类似,那就是注意避免使太多的电路塞满太小的空间,从而造成不切实际的公差、高的内层容量、甚至可能危及产品质量的安全。因此,性能规范应该考虑内层线路的热冲击、绝缘电阻、焊接电阻等的完整的评估。以下内容叙述了多基板设计中应考虑的重要因素。

一, 机械设计因素

机械设计包括选择合适的板尺寸、板的厚度、板的层叠、内层铜筒、纵横比等。

1 板尺寸

板尺寸应根据应用需求、系统箱尺寸、电路板制造者的局限性和制造能力进行最优化选择。大电路板有许多优点,例如较少的基板、许多元器件之间较短的电路路径,这样就可以有更高的操作速度,井且每块板子可以具有更多的输入输出连接,所以在许多应用中应首选大电路板,例如在个人计算机中,看到的都是较大的母板。然而,设计大板子上的信号线布局是比较困难的,需要更多的信号层或内部连线或空间,热处理的难度也较大。因此,设计者一定要考虑各种因素,例如标准板尺寸、制作设备的尺寸和制作过程的局限性。在1PC-D-322 中给出了关于选择标准的印制电路/板尺寸的一些指导原则。

2 板厚度

多基板的厚度是由多种因素决定的,例如信号层的数目、电源板的数量和厚度、优质打孔和电镀所需的孔径和厚度的纵横比、自动插入需要的元器件引脚长度和使用的连接类型。整个电路板的厚度由板子两面的导电层、铜层、基板厚度和预浸材料厚度组成。在合成的多基板上获得严格的公差是困难的,大约10% 的公差标准被认为是合理的。

3 板的层叠

为了将板子扭曲的几率减到最小,得到平坦的完成板,多基板的分层应保持对称。即具有偶数铜层,并确保铜的厚度和板层的铜箔图形密度对称。通常层压桓使用的构造材料的径向(例如,玻璃纤维布)应该与层压板的边平行。因为粘接后层压板沿径向收缩,这会使电路板的布局发生扭曲,表现出易变的和低的空间稳定性。

然而,通过改善设计可以使多基板的翘曲和扭曲达到最小。通过整个层面上铜箔的平均分布和确保多基板的结构对称,也就是保证预浸材料相同的分布和厚度,可达到减小翘曲和扭曲的目的。铜和碾压层应该从多基板的中心层开始制作,直到最外面的两层。规定在两个铜层之间的最小的距离(电介质厚度)是0.080mm 。

由经验可知,两个铜层之间的最小距离,也就是粘接之后预浸材料的最小厚度必须至少是被嵌入的铜层厚度的两倍。换一句话说,两个邻近的铜层,如果每一层厚度是30μm ,则预浸材料的厚度至少是2 (2 x 30μm) =120μm ,这可通过使用两层预浸材料实现(玻璃纤维织布的典型值是1080) 。

4 内层铜箔

最常使用的铜箔是1oz (每平方英尺表面区域的铜箔为1oz) 。然而,对于密集的板子,其厚度是极其重要的,需要严格的阻抗控制,这种板子需要使用

0.50z 的铜箔。对于电源层和接地层,最好选用2oz 或更重一点的铜箔。然而,蚀刻较重的铜箔会导致可控性降低,不容易实现所期望的线宽和间距公差的图样。因而,需要特殊的处理技术。

5 孔

根据元器件引脚直径或对角线的尺寸,镀通孔的直径通常保持在0.028 0.010in之间,这样可以确保足够的体积,以便进行更好的焊接。

6 纵横比

"纵横比"是板的厚度与钻孔直径的比值。一般认为3: 1 是标准的纵横比,虽然像5: 1 的高纵横比也是常用的。纵横比可通过钻孔、除胶渣或回蚀和电镀等因素确定。当在可生产的范围内保持纵横比时,过孔要尽可能的小。

二,电气设计因素

多基板是高性能、高速度的系统。对于较高的频率,信号的上升时间减少,因而信号反射和线长的控制变得至关重要。多基板系统中,对于电子元器件可控阻抗性能的要求很严格,设计要满足以上要求。决定阻抗的因素是基板和预浸材料的介电常数、同一层面上的导线间距、层间介质厚度和铜导体厚度。在高速应用中,多基板中导体的层压顺序和信号网的连接顺序也是至关重要的。介电常数:基板材料的介电常数是确定阻抗、传播延迟和电容的重要因素。使用环氧玻璃的基板和预浸材料的介电常数可通过改变树脂含量的百分比进行控制。

环氧树脂的介电常数为3.45 ,玻璃的介电常数为6.2。通过控制这些材料的百分率,环氧玻璃的介电常数可能达到4.2 - 5.3 。基板的厚度对于确定和控制介电常数就是一个很好的说明。

介电常数相对较低的预浸材料适合应用于射频和微波电路中。在射频和微波频率中,较低的介电常数造成的信号延迟较低。在基板中,低损耗因素可使电损失达到最小。

预浸材料ROR 4403 是ROGERS 公司生产的一种新型材料。这种材料和在标准多基板( FR -4材料)结构中使用的其他基板(例如,微波板使用的RO 4003 或RO 4350) 相互兼容。



来源:0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭