当前位置:首页 > 工业控制 > 电子设计自动化

本文介绍了IGLOO系列主要特性和优势,IGLOO系列架构框图以及采用AGL125的马达控制子板主要特性,步进马达控制逻辑方框图,BLDC马达控制逻辑方框图以及马达控制子板电路图和材料清单。

Actel公司的IGLOO系列FPGA是采用Flash Freeze技术的低功耗闪存FPGA,它基于130nm闪存工艺,具有最低功耗,单片解决方案和小占位面积的封装,可重新编程以及丰富的其它特性,核电压1.2 V -1.5 V,支持低功耗和单电压系统工作,Flash Freeze模式的功耗为5uW,系统门从15K到100万,多达144kb的双端口SRAM和多达300个用户I/O,可满足消费品,工业,医疗,汽车电子,计算,通信和军用航天领域的便携产品对低功耗的需要。

IGLOO系列主要特性和优势:

Low Power

• 1.2 V to 1.5 V Core Voltage Support for Low Power

• Supports Single-Voltage System Operation

• 5 μW Power Consumption in Flash*Freeze Mode

• Low Power Active FPGA Operation

• Flash*Freeze Technology Enables Ultra-Low Power Consumption while Maintaining FPGA Content

• Easy Entry to / Exit from Ultra-Low Power Flash*Freeze Mode

High Capacity

• 15 k to 1 Million System Gates

• Up to 144 kbits of True Dual-Port SRAM

• Up to 300 User I/Os

Reprogrammable Flash Technology

• 130-nm, 7-Layer Metal, Flash-Based CMOS Process

• Live-at-Power-Up (LAPU) Level 0 Support

• Single-Chip Solution

• Retains Programmed Design When Powered Off

• 250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance

In-System Programming (ISP) and Security

• Secure ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except ARM®-enabled IGLOO® devices) via JTAG (IEEE 1532–compliant)†

• FlashLock® to Secure FPGA Contents

High-Performance Routing Hierarchy

• Segmented, Hierarchical Routing and Clock Structure

Advanced I/O

• 700 Mbps DDR, LVDS-Capable I/Os (AGL250 and above)

• 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation

• Bank-Selectable I/O Voltages—up to 4 Banks per Chip

• Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X,and LVCMOS 2.5 V / 5.0 V Input†

• Differential I/O Standards: LVPECL, LVDS, B-LVDS, and MLVDS (AGL250 and above)

• Wide Range Power Supply Voltage Support per JESD8-B, Allowing I/Os to Operate from 2.7 V to 3.6 V

• Wide Range Power Supply Voltage Support per JESD8-12, Allowing I/Os to Operate from 1.14 V to 1.575 V

• I/O Registers on Input, Output, and Enable Paths

• Hot-Swappable and Cold-Sparing I/Os‡

• Programmable Output Slew Rate† and Drive Strength

• Weak Pull-Up/-Down

• IEEE 1149.1 (JTAG) Boundary Scan Test

• Pin-Compatible Packages across the IGLOO Family

Clock Conditioning Circuit (CCC) and PLL†

• Six CCC Blocks, One with an Integrated PLL

• Configurable Phase Shift, Multiply/Divide, Delay Capabilities, and External Feedback

• Wide Input Frequency Range (1.5 MHz up to 250 MHz)

Embedded Memory

• 1 kbit of FlashROM User Nonvolatile Memory

• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit† RAM Blocks (×1, ×2, ×4, ×9, and ×18 organizations)

• True Dual-Port SRAM (except ×18)†

ARM Processor Support in IGLOO FPGAs

• M1 IGLOO Devices—Cortex™-M1 Soft Processor Available with or without Debug


图1。IGLOO系列架构框图(AGL015, AGL030, AGL060和AGL125)

马达控制子板

The Motor Control daughtercard provides a design reference and evaluation kit for motor control using Actel’s ultra-low power IGLOO® FPGAs. This daughtercard, co-developed with Actel and Ishnatek, is available exclusively from Avnet Memec. The board is designed to work with Actel’s IGLOO Icicle™ Kit (ordered separately) and attaches to the Icicle kit’s accessory board edge connector.

马达控制子板主要特性:

• Supports

Stepper Motor (4-Wire Configuration)

Full Step / Half Step Mode

Micro Step Mode (Trapezoidal Option)

8 / 16 Microsteps

Brushless DC (BLDC) Motor (Three Phase BLDC Motor)

Sensored Drive

• Using Hall Effect Sensors provided on Motors

• Direction Control – Clockwise or Counterclockwise Rotation

• Basic Functions

Start

Stop

Step ( Full or Half Stepping in case of Stepper Motor)

RPM+/RPM- (Increase/Decrease RPM)

Digital Control Features

• Support Two PWM Modes

PWM on high side of Mosfet Bridge

PWM on low side of Mosfet Bridge (Available but not supported)

• Hardware/Software Control

Access to all above features through keys/switches on board

Equivalent controls are provided also through software

Software Interface using on-board USB-to-RS232 bridge on Icicle

• High Output Current up to 2 A

图2。马达控制子板外形图

图3。步进马达控制逻辑方框图

图4。BLDC马达控制逻辑方框图

图5。马达控制子板电路图(1)

图6。马达控制子板电路图(2)

图7。马达控制子板电路图(3)
马达控制子板材料清单(BOM):

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭