当前位置:首页 > 工业控制 > 电子设计自动化

摘 要: 综合考虑面积和速度等因素,采用一次多项式拟合实现了简单快速的log-add算法单元。实验结果表明,在相同的精度要求下,其FPGA实现资源占用合理,硬件开销好于其他次数的多项式拟合实现方案。
关键词: 多项式拟合;log-add算法单元;FPGA实现

在多路实时语音处理系统中,基于高斯混合概率模型[1,2]的系统后端运算量非常大,采用log-add算法单元可以简化运算,提高运算效率。其函数形式为[3]:

查表法可以认为是多项式次数为0的情况,随着精度要求的增加,查找表会变得很大[5]。函数逼近可以采用多项式拟合,首先根据所需要的精度确定多项式次数和分段的大小,然后计算每一段的多项式系数。
设分段的大小为d(d=2-k,k=0,1,2…),计算各段系数时,各段函数平移到区间[0,d),如图2所示。用Matlab进行多项式拟合依次得到各段系数。由此可以得出各段的拟合多项式为:

这样实现时可以把二进制的定点数x分为MSBs和LSBs两段。MSBs对应段标号i,由段标号取出系数ci0,ci1,ci2…;LSBs对应浮点数xl,代表段内偏移值。由图3可以计算出f(x)。

MSBs和LSBs应该这样选取,例如定标为Q32.f,选择d=1/2,则MSBs为高32-(f-1)位,LSBs为低f-1位;选择d=1/4, 则MSBs为高32-(f-2)位,LSBs为低f-2位……;如果MSBs为32或31,则变成了查表法。
2 多项式拟合的实现方案
2.1 多项式次数与分段大小、精度的关系
用Matlab进行仿真,表1列出了各种精度要求下各次多项式所需的分段大小(d),其中?啄为精度要求,?茁为多项式的次数。
由表1可以看出,相同次数的情况下,精度要求越高,分段大小d越小;而相同精度的情况下,次数越高,分段大小d越大。另外,次数越低,精度越高,分段大小d下降的数量级越快。



表2列出各次多项式在不同精度要求下,所需要系数个数(n)的分布情况。

由表2可以看出,其结果与表1趋于一致。相同次数下,精度要求越高,所需要的系数个数n越多;而相同精度下,次数越高,所需要系数个数n越少。n随着次数的降低和精度的提高迅速增大。
与n相反,多项式的计算量随着多项式次数的增加而增加。根据horner算法[3]多项式的表达式如下:

式(6)表明,多项式次数增加1次,计算多项式的函数值增加1次乘法和1次加法。多项式系数存储量与多项式的计算量是其FPGA实现时互相制约的两个因素。
3 仿真结果
为了取得面积与速度的平衡,根据测试结果及实际系统的要求,选择δ=10-4、β=1来实现。本文采用Xilinx ISE Design Suite 10.1进行仿真测试。定标取Q32.23,其硬件实现计算流程如图4,输入为定点数x,由MSBs和LBSs取得系数和xl,经过reg系数寄存器及1次乘法和1次加法,输出y。

时序仿真结果结果如图5。输入x是32 bit的无符号定点数,输出为y;clk是时钟;reset为复位信号;MSBs是x的高位,用于得到多项式系数;LSBs是x的低位即自变量;temp是用于缓存中间结果,coef[...]是多项式系数。输出延迟3个时钟周期,流水线填满后,每个时钟周期输出一个结果。

例如输入32’h00333333(浮点数0.4),从图中可以看出其输出y为24’h41aba5,与实际函数值24’h41aa7c存在误差。其实现结果与浮点结果比较误差如图6。可以看出定点数误差在800以内,也就是浮点数约10-4以内,误差范围与表1相一致。

使用ISE软件的XST工具综合,选择设备为Xilinx公司Virtex5系列的XC5VFX100T(speed-2)。其资源占用情况如表3,其中Xilinx公司的乘加硬件设备DSP48E用于算法中的乘法运算及加法运算[6]。

可以对比δ=10-4,β=0,1,2,3四种实现方式的硬件开销,如表4。

由表4可以看出,虽然多项式次数为0时使用寄存器(Registers)和查找表(LUTs)最少,且乘法和加法次数(DSP48Es)为0,但由于其使用了24×40 960 ROM,占用存储面积较大;而一次多项式拟合虽然所占用查找表(LUTs)一项相对较多,但综合考虑,其他资源占用都比较均衡。其整体的资源开销要好于其他方案。
log-add算法单元作为高斯混合概率模型FPGA实现的基本算法单元,能够简化运算、提高运算效率。在系统精度要求10-4的情况下,采用一次多项式拟合能够有效地节省硬件开销,实现简单快速log-add算法单元,为大规模实时处理多路语音数据提供了重要保证。
参考文献
[1] Douglas A.Reynolds,THOMAS E.Quatieri,Robert B.Dunn. Speaker verification using adapted gaussian mixture models[J].Digital Signal Processing,2000(10).
[2] Kazuo Miura,Hiroki Noguchi,Hiroshi Kawaguchi,et al.A low memory bandwidth gaussian mixture model(GMM) processor for 20,000-word real-time speech recognition FPGA system[J].ICECE Technology,2008.FPT.2008.
[3] MELNIKOFF S J,FQUIGLEY S.Implementing the Log-add Algorithm in Hardware[J].Electronics Letters,2003.
[4] LEE B R,BURGESS N.A pallrallel Look-up logarithmic number system addition subtraction scheme for FPGA[J]. Proc.FPT,2003.
[5] 李炜,沈绪榜.对数数值系统的研究[J].微电子学与计算机,2004.
[6] 胡彬.Xilinx ISE Design Suite 10.x FPGA开发指南—逻辑设计篇[M].北京:人民邮电出版社,2008.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭