当前位置:首页 > 单片机 > 单片机
[导读]应用于工业过程控制和智能化仪器仪表的单片机,由于现场条件往往十分恶劣,不可避免地会受到各种各样的电磁干扰。当串入系统的干扰作用于单片机内部的 CPU部件时,后果更加严重,将导致系统失控。最典型的失控故障是

应用于工业过程控制和智能化仪器仪表的单片机,由于现场条件往往十分恶劣,不可避免地会受到各种各样的电磁干扰。当串入系统的干扰作用于单片机内部的 CPU部件时,后果更加严重,将导致系统失控。最典型的失控故障是破坏程序计数器PC的状态,导致程序在地址空间内“乱飞”,或者陷入“死循环”。因此,尽可能早地发现程序失控,并采取相应的补救措施,是单片机应用系统抗干扰设计的重要内容。

使程序从“乱飞”状态纳入正轨的方法称为程序拦截技术,包括指令冗余技术、软件陷阱技术等。使程序摆脱“死循环”,通常多采用硬件电路实现的监视技术,又称“看门狗”技术(Watchdog)。常见的硬件 “看门狗”电路有单稳态型“看门狗”电路、计数器型“看门狗”电路、微处理器监控专用芯片等。上述的抗干扰方法可参阅有关资料文献。本文将讨论由软件实现的“看门狗”技术。

由硬件电路实现的“看门狗”技术,可以有效地克服主程序或中断服务程序由于陷入“死循环”而带来的不良后果。但在工业应用当中,严重的干扰有时会破坏中断方式控制字,导致中断关闭,这时一般的硬件“看门狗”将不能使中断恢复正常。依靠软件进行多重监视,可以弥补上述不足。

软件“看门狗”技术的基本思路是:在主程序中对中断服务程序的运行进行监视;在中断服务程序中对主程序的运行进行监视;采用两个中断实施相互监视,称之谓软件三重监视抗干扰技术。从概率观点,这种相互依存,相互制约的抗干扰措施,将使系统的可靠性大大提高。

本文以MCS—51单片机为例,说明软件三重监视的基本原理。系统软件包括主程序、T0定时中断子程序和T1定时中断子程序3部分,将T0设计成高级中断,T1设计成低级中断,从而形成中断嵌套。

1 主程序监视过程设计  

主程序流程如图1—1所示。主程序完成系统测控功能的同时,还要监视T0中断服务程序因干扰而引起的中断关闭故障。A0为T0中断服务程序运行状态的观测单元,T0每发生一次中断,A0计数单元少一次中断(T0定时溢出时间小于测控功能模块运行时间),引起A0的变化。在测控功能模块的出口处,将A0值与E0值进行比较,以判断A0是否发生变化。若A0发生变化,说明T0中断运行正常;若A0不变化,说明T0中断关闭,则转到程序入口0000H处,进行出错处理后,程序恢复正常运行。

设A0、E0、M计数单元分别为内RAM中的30H、40H和50H单元,监视程序如下:
        loop1:MOV   50H, #00H;  清M单元
                      MOV   40H,   30H ;暂存A0单元 
               …;           测控功能模块
           CLR    C
           MOV    A,     30H
           SUBB   A,     40H; 判断A0变化
           JZ     loop
           MOV    30H,   #00H
         LJMP   loop1
  loop:LJMP 0000H

2 T1中断服务程序监视过程设计  

T1中断程序流程如图2—1所示。T1中断服务程序在完成特定测控功能的同时,还要监视主程序的运行状态。在中断服务程序中设置一个主程序运行计时器M1,T1每中断一次,M便自行加1。M中的数值与T1定时溢出时间之积表示时间值。若由M表示的时间值大于主程序的运行时间,说明主程序因干扰而陷入了“死循环”,T1中断服务程序便修改断点地址,返回0000H,进行出错处理。若M不大于主程序运行时间,说明主程序运行正常,中断服务程序也正常返回。M单元在系统主程序运行中循环清“0”。

设单片机晶振频率为6MHz,T1以工作方式1产生2ms的定时中断,则T1的计数初值为:
(216-N)×2×10-6=2×10-3
  N=64536D=FC18H

若图1—1中主程序的最大循环时间为200ms,则图2—1中的T取值应不小于64H,可取68H。A1为T1中断程序运行状态监测单元,取内RAM 31H单元,M仍取50H单元,60H、61H为暂存单元,则T1中断监视程序如下: 
        PUSH   PSW            ;保护现场
    PUSH    ACC
    MOV     TH1,  #0FCH    ;T1置初值
    MOV     TL1,  #18H
    INC     31H              ;A1单元加1
    INC     50H                  ;M单元加1
    CLR      C
    MOV      A,#68H
    SUBB     A,50H              ;T≥M?
    JC       loop 
      …                   ;中断测控程序
    POP     ACC                  ;恢复现场
    POP     PSW
RETI                        ;返回
loop:POP  ACC            ;恢复现场
    POP     PSW
    POP     60H                  ;原断点弹出
    POP     61H
    MOV     60H,#00H           ;断点修改为0000H
    MOV     61H,#00H
    PUSH    60H
    PUSH    61H
  RETI    ;返回

3 T0中断服务程序监视过程设计  

T0中断程序流程如图3—1所示。T0中断的功能是监视T1中断服务程序的运行状态。由于T0中断服务程序较短,因干扰而引起的“死循环”的几率很小,重点考虑中断关闭故障。图3—1中A1、B1为T1中断运行状态观测单元。A1的初值为00H,T1每中断一次,A1便加1,如图2—1所示。T0中断服务程序中若检测到A1>0,说明T1中断正常;若A1=0,则B1单元加1(B1的初值为00H),若B1的累加值大于Q,说明T1中断失效,失效时间为T0定时溢出时间与Q值之积。例如:T0的定时溢出时间为4ms,T1的定时溢出时间为2 ms,当Q=5时,说明允许T1的失效时间为20 ms,在这样长的时间内,T1并没有发生中断,说明T1中断发生了故障。由于T0中断级别高于T1中断级别,所以T1的任何故障(如死循环、中断关闭)都会由T0检测出来。T0中断服务程序一般很短,发生“死循环”的几率很小。

设单片机晶振频率为6MHz,T0以工作方式1产生4 ms的定时中断,则T0的计数初值为:
(216-N)×2×10-6=4×10-3 
  N=63536D=F830H

设计数单元A0、A1、B1分别为内RAM 30H、31H、32H,Q=5,60H、61H为暂存单元,则T0中断监视程序如下: 
    PUSH   PSW     ;保护现场
    PUSH      ACC
    MOV       TH0,#0F8H  ;设T0初值
    MOV       TL0,#30H
    INC       30H          ;A0加1
    MOV       A,31H       ;A1单元判0
    JZ        loop1
    CLR        A       ;清A1、B1单元
    MOV       31H,A
    MOV       32H,A
    loop0:POP   ACC         ;恢复现场
           POP   PSW
         RETI             ;返回
    loop1:INC   32H         ;B1加1
           CLR    C
           MOV     A         ,32H;B1≥Q?
           SUBB    A,#05H    
           JC      loop0
           POP    ACC    ;恢复现场
           POP     PSW
           POP     60H        ;原断点弹出
           POP     61H
           MOV     60H,#00H ;修改断点0000H
           MOV     61H,#00H
           PUSH    60H
           PUSH    61H
         RETI

当系统受到干扰后,主程序可能发生“死循环”,中断服务程序也可能陷入“死循环”,或因中断方式字的破坏而关闭中断。主程序的“死循环”可由T1中断服务程序监视;T1中断服务程序的“死循环”和中断关闭故障由T0中断服务程序监视;T0的中断故障可由主程序监视。由于采取了三重软件监测方法,大大提高了系统运行的可靠性。

[参考文献]
[1] 何立民.单片机应用技术选编[M].北京航空航天大学出版社,1998,8.
[2] 王幸之.8051/8098单片机原理及接口设计[M].兵器工业出版社,1998,1.
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭