当前位置:首页 > 单片机 > 单片机
[导读]传统的HART(Highway Addressable Remote Transducer)变送器的功能比较单一,只有温度、压力、位移、电磁流量等物理量的单一测量,传感器输出微弱的电压或电流信号。由于这些传感器的负载阻抗、激励方式、输入信号灵敏

传统的HART(Highway Addressable Remote Transducer)变送器的功能比较单一,只有温度、压力、位移、电磁流量等物理量的单一测量,传感器输出微弱的电压或电流信号。由于这些传感器的负载阻抗、激励方式、输入信号灵敏度、补偿方式均不相同,所以以往的变送器均要求设计不同的配套电路与相应的传感器配合,给生产制造部门和采购部门带来很多不便,也使供货周期延长,本文研究的智能型HART通用变送器不仅保留了传统仪表的4 mA~20 mA的模拟信号的输出,并且通过HART协议实现双向数字通信。它可与任何符合HART协议的手操器或控制系统互连;通过手操器或上位机可远程设定变送器的类型、供电方式(恒压源供电或者恒流源供电)、零点、量程、工程单位和阻尼时间等基本信息和参数。

1 系统硬件电路设计

微处理器是HART智能变送器的核心中枢,协调各个模块正确有序工作。目前市面上用的较多的是51系列单片机,但51系列单片机绝大部分仍然采用8 bit中央处理器,对于像HART通信这样对运算速度要求比较高的硬件系统来说,8 bit处理器已不能满足要求。另外51单片机内部的硬件资源比较少,单片机要与外围电路如液晶显示模块、A/D转换模块、D/A转换模块、UART通信模块等进行通信,而51单片机的外围扩展口有限,很显然不满足要求。本硬件系统中的MCU采用摩托罗拉公司生产的MC9S12E64[3],该芯片与普通的微处理器芯片相比,有更多的优点。MC9S12E64采用模块化结构和16 bit的中央处理器CPU,最高总线速度8 MHz,大大提高了运算速度和精度。

1.1 系统方案设计

为了满足多通道数据测量和低功耗,硬件电路主要包括:MCU微处理器模块;A/D转换模块;HART通信模块;电源模块;恒压/恒流激励电路。

为了实现多通道模拟信号的测量,本硬件系统采用24 bit多路ADC(AD7714)实现,其中两路构成差分电压V1输入,另外两路分别测量单端电压V2和电流I。如图1所示,在电流的输入端加一电阻,对电流的测量实际上也是对电压的测量,这样将测得对应的电压值通过换算得到实际的电流值。

为了克服输入的电压,电流信号对AD7714测量的影响,在硬件电路设计上使用数字开关芯片ADG733,通过MCU控制ADG733,从而间接地“打开”或是“关闭”输入通道,消除外部信号对AD转换的干扰,另一方面也方便多通道的测量。在每一路通道前面增加由运放构成的驱动电路,可以组成模拟滤波及放大网络,提高测量精度。UART输入信号直接与MCU空闲管脚连接,实现数字测量。考虑到功耗原因,实际使用时不可能所有测量通道都采用,将根据需要配置为其中1~2个通道进行测量和转换。

1.2 分层电源网络与低功耗设计

1.2.1 分层电源网路的设计

考虑在单电源供电的情况下(图2所示),由于MCU、D/A、HART等模块需要使用近2 mA的电流,因此信号采样部分的电量非常有限,仅有1 mA左右。除去A/D、运放等消耗的电流,实际提供给传感器的电流仅0.5 mA左右。只能通过降低激励电压/电流的大小,减少电量消耗。同时在软件里进行控制,每次只能对一个测量通道进行采样和转换输出。这一方案的优点是结构简单,但是使用受限,仅数字通信方式可以实现对多参数的测量。

另一种方案是采用分层电源网络模式,模拟信号的测量和转换使用上层3 V电源网络(由TL431调整得到,可提供约2 mA的电流),同时可以利用这一稳定的3 V直接作为恒压源进行传感器激励。而数字信号(频率和UART)的测量采用下层电源网络,以实现和MCU的简单连接。这一方案的优点是解决了功耗问题,但电路因此变得复杂,而且在输入接口侧模拟信号和数字信号不共“地”, 应注意将其分离, 图3为分层电源网络的设计。

1.2.2 电平转换模块的设计

上层电路如AD7714采用VDD=+6 V, GND=+3 V的电源,其对AD714来说,+3 V代表的是0,+6 V代表的是1。而MCU采用的是下层电源,即VDD=3 V,GND=0 V,对MCU来说0 V代表的是0,+3 V代表的是1。如果AD7714要与MCU进行SPI通信,很显然不能简单将两端口相连,需要设计合适的电平转换电路以满足数字通信要求。

图4中将MCU的MOSI的0 V~3 V电压转换为3 V~6 V电压供AD7714进行SPI数字通信。当MCU输出为0时,即输入为0 V,则三极管Vbe=0 V<0.7 V,则三极管截止,输入到反相器的电压为+6 V,反相器输出就为3 V;如果MOSI输入为+3 V时,三极管导通,输入到反相器的电压由+6 V经两电阻分压提供3 V电压,则反相器输出为+6 V,这样就实现了电平的转换。同样由3 V~6 V到0 V~3 V的电平转换如图5, 当输入为+6 V时,三极管截止,输入反相器的为0 V电压, 则输出为+3 V, 当输入3 V电压时, 三极管导通,经分压输入到反相器的电压为+3 V,则输出为0 V。

1.3 HART通信模块的设计

HART协议通信模块主要由现场仪表内的A5191HRT和AD421型DAC组成。其中,AD421接收MCU传送的数字信号并转换成4 mA~20 mA电流输出,传输测量结果:A5191HART[1]接收叠加在4 mA-20 mA环路上的FSK信号。解调后传输给MCU,或将MCU产生的应答帧信息调制成FSK信号经波形后由AD421叠加在4 mA~20 mA环路上进行传输,如图6所示。

A5191HRT内部包括发送数据调制器与波形整形电路、载波检测电路、接收滤波器与解调电路、控制逻辑和时钟振荡器电路。调制器接收不归零码并调制为FSK信号。1 200 Hz代表逻辑“l”, 2200 Hz代表逻辑“0”,数据率为1 200 b/s,之后由波形整形电路将FSK信号整形为兼容HART协议要求的信号发送出去。

2 系统软件设计

HART通用型智能变送器的软件按其功能分为四个部分:监测程序、测控程序、HART通信程序和辅助程序。监测程序是整个系统软件的中心环节,又称为主程序。它接收和分析各种命令,管理和协调全部程序的执行,其包括系统初始化、系统自检等部分;测控程序主要包括数据采集、数据处理、输出控制和自我诊断等部分。其中数据采集通过采样中断子程序实现,数据处理、输出控制和自我诊断等部分则在主程序中调用。HART通信程序也就是HART协议数据链路层和应用层的软件实现,是整个智能变送器软件设计的关键,仪表的可互操作性也在这里得到体现。数据链路层软件主要是串行口接收/发送中断子程序,属于中断处理(服务)程序;应用层的软件是对收到的命令帧进行翻译和处理,在主程序中被调用。

2.1 HART通信程序的设计

HART通信程序是HART协议数据链路层和应用层的软件实现,采用串口中断实现通信的接收和发送服务,符合HART协议的通信工作都在此程序中完成,如图7所示。

进入串口中断服务程序后,要先判断是发送请求还是接收请求。若发送请求标志为l则转向发送服务程序,若接收请求标志为l则转向接收服务程序。HART应用层的软件对收到的命令帧进行翻译和处理,如:字节流和浮点数、整数、字符串之间的相互转换,然后根据各自的命令号进行相应的命令处理,如:改量程、改单位、改阻尼时间等,最后,把应答帧按照一定的格式放入发送缓冲区,由串行口中断发回。如果有通信错误或命令错误时,则发回报告错误的应答帧。发送服务程序是在程序运行过程中向上位机发送信息,要设置发送请求标志,将要发送的数据信息存入串口发送缓冲区, 并计算垂直校验, 在此要发送的数据信息的格式为: 前导码2 B,定界符1 B,地址码l或5 B,命令号1 B,字节长度1 B,响应码2个字节,数据0~25 B,校验和1 B。发送时,先要启动发送载波,初始化物理层,建立通信链路和另一对等通信实体通信,发送应答帧,发送结束后停止发送载波,初始化物理层,终止物理层链路通信。发送服务首先发送前导码,每发送一个前导码计数器就减1,然后发送HART协议的应答帧,发送结束后停止发送载波。

目前HART型智能仪表的市场占有量已经接近50%,但仍有约40%的仪表采用模拟量或非标准数字协议进行输出,这些仪表将逐步被HART协议或其他数字总线协议所替代。为使这些特种规格产品升级为HART型智能仪表,一般需要定制与之相配套的电子部件或HART转换模块。这些复合型多参数传感器,也是由普通的压力、差压、温度等传感器构成。为了实现将这些特殊规格的仪表或传感器升级为HART型智能变送器,需要设计通用型电子部件,提供多个测量通道,不仅能与市场上通用的传感器相配套,还能与复合型多参数传感器相配套。本文正是基于目前工业上的现实要求,设计出一种基于HART协议的多通道数据测量的智能变送器,以满足多参数测量。在电路设计上,为了减小硬件电路功耗,提出一种双层电源网路结构,满足电路设计要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

中国 上海,2025年9月10日——全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)今日亮相第二十六届中国国际光电博览会(CIOE 2025),发布其最新的直接飞行时间(dToF)传感器TMF8829。同时,艾...

关键字: 传感器 3D扫描仪 消费电子

中国北京(2025年9月10日)—— 业界领先的半导体器件供应商兆易创新GigaDevice(股票代码 603986)亮相于深圳国际会展中心举办的第26届中国国际光电博览会(展位号:12C12),全面展示GD25 SPI...

关键字: 光通信 MCU Flash

瑞典乌普萨拉,2025年9月4日 — 全球领先的嵌入式系统开发软件解决方案供应商IAR宣布,瑞萨最新推出的具备量产条件的RH850/U2A MCAL(微控制器抽象层)软件包,已全面支持IAR的RH850工具链(v2.21...

关键字: MCU ADAS 电动汽车

随着汽车电子设备日益复杂,车企对体积紧凑、高能效、可靠的解决方案的需求不断增长,多输出功率开关在集成度、成本效益、故障诊断和能效方面优势愈发明显。现代汽车工业越来越依赖众多的低功率电子模块,例如,传感器、LED和继电器。...

关键字: 功率开关 电源管理 传感器

本届年会将在上海(11月13-14日)、北京(11月19-20日)和深圳(11月27-28日)举行,面向嵌入式设计工程师推出25门技术课程

关键字: 嵌入式 MCU 模拟

2025年9月4日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 宣布与电子元器件制造商、连接器领域创新企业Molex合作推出全新互动电子书《The El...

关键字: 机器人 连接器 传感器

面对市场对更智能产品、更短设计周期以及更高效灵活生产流程的需求日益增长,设计与制造企业纷纷借助人工智能,推动业务流程迈向新高度。凭借处理复杂数据的卓越能力与传递智能洞见的便捷性,人工智能已准备好在工业价值链的各个环节承担...

关键字: 人工智能 工业物联网 传感器

传感器模块能实现便捷无接触的后备箱或侧滑门开启,适配各种车辆架构 该24 GHz雷达传感器可集成于保险杠或底盘上,并通过特定的手势或脚部动作触发响应 已为多家欧洲主流车企启动量产交付 德国布尔2025...

关键字: 传感器 BSP 触发 保险杠

中国北京(2025年9月2日)—— 业界领先的半导体器件供应商兆易创新GigaDevice(股票代码 603986)受邀出席2025智能汽车基础软件生态大会暨第四届中国汽车芯片大会,并与国内领先的AUTOSAR车用操作系...

关键字: 汽车电子 MCU 智能汽车

提升工业系统智能化的方法有多种,其中包括将边缘和云端人工智能(AI)技术应用于配备模拟和数字器件的传感器。鉴于AI技术方法的多样性,传感器设计人员需要考虑多个相互冲突的要求,包括决策延迟、网络使用、功耗/电池寿命以及适合...

关键字: 人工智能 传感器 AI
关闭