当前位置:首页 > 单片机 > 单片机
[导读] 本文是基于AT89C51单片机的频率计的C源程序。该频率计主要实现的功能有如下几个:   1. 测试功能   它表明数字频率计所具备的全部测试功能,一般包括测频,周期,累计脉冲数,频率比,时间间隔

本文是基于AT89C51单片机频率计的C源程序。该频率计主要实现的功能有如下几个:


  1. 测试功能

  它表明数字频率计所具备的全部测试功能,一般包括测频,周期,累计脉冲数,频率比,时间间隔及自较等功能。

  2. 测量范围

  它说明不同功能的有效测量范围。如测频率时,测量范围是数字频率计处于正常工作条件下,被测信号的频率范围,一般用频率的上,下限值表示,低端大部分从10Hz开始;高端因不同的频率计而异。因此高端频率是确定低,中,高速计数器的依据。在测量周期时,测量范围常用周期的最大值,最小值表示。

  3. 输入特性

  数字频率计一般有2~3个输入通道,测试不同项目时,被测信号可经不同的通道输入仪器。输入特性是表明数字式频率计于被测信号源相连的一组特性参数,通常包括以下几个方面。

  (1)输入灵敏度。通常指仪器能正常工作的最小输入电压的有效值。常用的数字频率计的灵敏度在100mV左右。

  (2)最大输入电压。指仪器所能允许的最大输入电压值,被测信号超过该值,则仪器不能保证正常工作,甚至会损坏。

  (3)输入耦合方式。仪器设置AC和DC两种耦合方式。AC耦合时,被测信号经隔直电容输入,DC耦合时,被测信号直接进入输入电路。AC耦合时适用于测量带有直流电平的信号,DC耦合适用于低频脉冲或阶跃方波信号的测量。

  (4)输入阻抗。为了减轻信号源的负载,数字式频率计一般采用高频输入阻抗。输入阻抗由输入电阻和输入电容两部分组成。

  4. 显示及工作方式

  它表明可显示的内容,显示数字的位数,所用的显示器件以及一次测量完毕显示测量结果的持续时间。有的还说明电子计数器是“不记忆”显示方式或“记忆”显示方式。

  5. 输出

  仪器可以直接输出的标准频率信号有几种,而且可以表明输出测量数据的编码方式和输出电平等。

C语言程序
#include
#include
#define uchar unsigned char
#define uint unsigned int
uchar temp[8]={0,0,0,0,0,0,0,0};
uchar temp1[8]={0,0,0,0,0,0,0,0};
uchar T1count,timecount,T1count1,timer,yushu,yushu1;
long fre,frx;
float zhou;
bit flag;
bit flag1;
void delay(uchar);
bit result;
sbit ird=P1^1;
sbit id=P1^0;
sbit clr=P1^2;

sbit en=P1^5;
sbit rw=P1^6;
sbit rs=P1^7;

sbit rd=P3^7;
sbit kb=P1^3;
sbit kx=P1^4;


sbit A0=P3^6;
sbit A1=P3^7;
bit start;

uchar code tab1[]="fre: ";
uchar code tab2[]="frx: ";

void delay(uchar z)
{
uchar x,y;
for(x=z;x>0;x--)
for(y=110;y>0;y--);
}

panduan_bz()
{
rs = 0;
rw = 1;
en = 1;
result = (bit)(P2&0x80);
en = 0;
return(result);
}

void write_com(uchar com)
{
while(panduan_bz());
rs = 0;
rw = 0;
en = 0;
P2=com;
delay(5);
en = 1;
delay(5);
en = 0;
}

void write_dat(uchar dat)
{
while(panduan_bz());
rs = 1;
rw = 0;
en = 0;
P2=dat;
delay(5);
en = 1;
delay(5);
en = 0;
}


void init()
{
uchar num;
en = 0;
write_com(0x38);
write_com(0x0c);
write_com(0x06);
write_com(0x01);
write_com(0x80);
for(num=0;num<16;num++)
{
write_dat(tab1[num]);
delay(5);
}
write_com(0x80+0x40);
for(num=0;num<16;num++)
{
write_dat(tab2[num]);
delay(5);
}
}

void init1()
{
ird=1;
id=1;
TMOD=0x55;
TH1=0;
TL1=0; //初值为0
TH0=0;
TL0=0;
TR0=1;
TR1=1;
IE=0x8a;
RCAP2H=(65536-47850)/256; //重装载计数器赋初值

RCAP2L=(65536-47850)%256;
ET2=1; //开定时器2中断
EA=1; //开总中断
TR2=1;
}
void display()
{
uchar i;
fre=(T1count*65536+TH1*256+TL1); //频率计算
temp[0]=fre/10000000;
temp[1]=fre%10000000/1000000;
temp[2]=fre%10000000%1000000%1000000/100000;
temp[3]=fre%10000000%1000000%1000000%100000/10000;
temp[4]=fre%10000000%1000000%1000000%100000%10000/1000;
temp[5]=fre%10000000%1000000%1000000%100000%10000%1000/100;
temp[6]=fre%10000000%1000000%1000000%100000%10000%1000%100/10;
temp[7]=fre%10000000%1000000%1000000%100000%10000%1000%100%10;
if(fre<=999)
{
write_com(0x80+4);
for(i=0;i<8;i++)
{
write_dat(0x30+temp[i]); //保存要显示的数到显示缓冲区
}
write_dat('H');
write_dat('z');
write_dat(' ');
write_dat(' ');
}
else if(fre>=1000)
{
write_com(0x80+4);
for(i=0;i<8;i++)
{
write_dat(0x30+temp[i]); //保存要显示的数到显示缓冲区
if(i==4)
{
write_dat('.');
}
}
write_dat('K');
write_dat('H');
write_dat('z');
}
T1count=0;
timecount=0;
TH1=0;
TL1=0;
TH0=0;
TL0=0; //定时器0重新装值,保证精确(不加的话只是最多差0.001s,0.1%)
}

void display1()
{
uchar j;
float zhou;
zhou=((T1count1*65536+TH0*256+TL0)*1.0549);
frx=(long)((zhou)*256);
temp1[0]=frx/10000000;
temp1[1]=frx%10000000/1000000;
temp1[2]=frx%10000000%1000000%1000000/100000;
temp1[3]=frx%10000000%1000000%1000000%100000/10000;
temp1[4]=frx%10000000%1000000%1000000%100000%10000/1000;
temp1[5]=frx%10000000%1000000%1000000%100000%10000%1000/100;
temp1[6]=frx%10000000%1000000%1000000%100000%10000%1000%100/10;
temp1[7]=frx%10000000%1000000%1000000%100000%10000%1000%100%10;
if(frx<=999)
{
write_com(0x80+0x40+4);
for(j=0;j<8;j++)
{
write_dat(0x30+temp1[j]); //保存要显示的数到显示缓冲区
}
write_dat('H');
write_dat('z');
write_dat(' ');
write_dat(' ');
}
else if(frx>=1000)
{ // frx=frx/1000;
write_com(0x80+0x40+4);
for(j=0;j<8;j++)
{
write_dat(0x30+temp1[j]); //保存要显示的数到显示缓冲区
if(j==4)
{
write_dat('.');
}
}
write_dat('K');
write_dat('H');
write_dat('z');
}
}


void main(void)
{
init();
init1();
while(1)
{
rd=0;
ird=1;
if(flag==1) //标志位为1,表示进行完了一次1S记数
{
flag=0;
kb=0;
kx=1;
clr=0;
ird=0;
id=0;
display1();
display();
}
else
{
kb=1;
kx=0;
}


}
}
void t1(void) interrupt 3 // 记数器中断,加1
{
T1count++;
}

void t0(void) interrupt 1 // 记数器中断,加1
{
T1count1++;
}
void Timer2() interrupt 5 //调用定时器2,自动重装载模式
{
uchar i=0; //定义静态变量i
TF2=0; //定时器2的中断标志要软件清0
timecount++; //计数标志自加1
if(timecount==20) //判断是否到1s
{
timecount=0; //将静态变量清0
flag=1;
}
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭