当前位置:首页 > 单片机 > 单片机
[导读] 该实验采用W5500开发板通过上位机向开发板发送命令来控制外接灯带的亮度;主要的过程如下:1实验目的上位机通过串口发送格式为:“redbrightness,greenbrightness,bluebrightness”的字符串到MCU。MCU将

该实验采用W5500开发板通过上位机向开发板发送命令来控制外接灯带的亮度;主要的过程如下:

1实验目的

上位机通过串口发送格式为:“redbrightness,greenbrightness,bluebrightness”的字符串到MCU。MCU将数字转化成相应的亮度。

2实验总体设计

实验主要分两个部分:PWM配置以及串口通信配置。整个实验的难点在于ASCII码转换为数字的过程。

3PWM产生原理

通用定时器可以利用GPIO引脚进行脉冲输出。要使STM32的通用定时器TIMx产生PWM输出,需要用到3个寄存器。分别是:捕获/比较模式寄存器(TIMx_CCMR1/2)、捕获/比较使能寄存器(TIMx_CCER)、捕获/比较寄存器(TIMx_CCR1~4)。(注意,还有个TIMx的ARR寄存器是用来控制pwm的输出频率)。

对于捕获/比较模式寄存器(TIMx_CCMR1/2),该寄存器总共有2个,TIMx _CCMR1和TIMx _CCMR2。TIMx_CCMR1控制CH1和2,而TIMx_CCMR2控制CH3和4。其次是捕获/比较使能寄存器(TIMx_CCER),该寄存器控制着各个输入输出通道的开关。

最后是捕获/比较寄存器(TIMx_CCR1~4),该寄存器总共有4个,对应4个输通道CH1~4。4个寄存器作用相近,都是用来设置pwm的占空比的。例如,若配置脉冲计数器TIMx_CNT为向上计数,而重载寄存器TIMx_ARR被配置为N,即TIMx_CNT的当前计数值数值X在TIMxCLK时钟源的驱动下不断累加,当TIMx_CNT的数值X大于N时,会重置TIMx_CNT数值为0重新计数。而在TIMxCNT计数的同时,TIMxCNT的计数值X会与比较寄存器TIMx_CCR预先存储了的数值A进行比较,当脉冲计数器TIMx_CNT的数值X小于比较寄存器TIMx_CCR的值A时,输出高电平(或低电平),相反地,当脉冲计数器的数值X大于或等于比较寄存器的值A时,输出低电平(或高电平)。如此循环,得到的输出脉冲周期就为重载寄存器TIMx_ARR存储的数值(N+1)乘以触发脉冲的时钟周期,其脉冲宽度则为比较寄存器TIMx_CCR的值A乘以触发脉冲的时钟周期,即输出PWM的占空比为A/(N+1)。

4PWM配置步骤4.1配置GPIO

void LED_Config(void)

{

GPIO_InitTypeDef GPIO_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE);//开启复用时钟

GPIO_InitStructure.GPIO_Pin = LED_RED| LED_BLUE | LED_GREEN;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_Init(GPIOC, &GPIO_InitStructure);

GPIO_SetBits(GPIOC, LED_RED | LED_BLUE | LED_GREEN);

}

4.2 配置定时器

void TIMER_Config(void)

{

TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);

GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);

TIM_BaseInitStructure.TIM_Period = 255;

TIM_BaseInitStructure.TIM_Prescaler = 0;

TIM_BaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;

TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInit(TIM3, &TIM_BaseInitStructure);

TIM_ARRPreloadConfig(TIM3, ENABLE);

TIM_Cmd(TIM3, ENABLE);

}

4.3配置PWM

void PWM_Config(void)

{

TIM_OCInitTypeDef TIM_OCInitStructure;

TIM_OCStructInit(&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = 0;

TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1; //选择模式1

TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low //极性为高电平有效

TIM_OC2Init(TIM3, &TIM_OCInitStructure);

TIM_OC3Init(TIM3, &TIM_OCInitStructure);

TIM_OC4Init(TIM3, &TIM_OCInitStructure);

TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable);

TIM_OC3PreloadConfig(TIM3,TIM_OCPreload_Enable);

TIM_OC4PreloadConfig(TIM3,TIM_OCPreload_Enable);

TIM_CtrlPWMOutputs(TIM3,ENABLE);

}

4.4小结

PWM模式1:

在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。

PWM模式2:

在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。

同时输出的有效点评还与极性配置有关:

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

此配置是高电平为有效电平,反之亦然。

5 UART配置步骤5.1 配置UART1以及对应的GPIO

void Usart_Config(uint32_t BaudRate)

{

GPIO_InitTypeDef GPIO_InitStructure;

USART_InitTypeDef USART_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

GPIO_Init(GPIOA, &GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_Init(GPIOA, &GPIO_InitStructure);

USART_InitStructure.USART_BaudRate = BaudRate;

USART_InitStructure.USART_WordLength = USART_WordLength_8b;

USART_InitStructure.USART_StopBits = USART_StopBits_1;

USART_InitStructure.USART_Parity = USART_Parity_No;

USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

USART_Init(USART_PC, &USART_InitStructure);

USART_ITConfig(USART_PC, USART_IT_RXNE, ENABLE); //开启串口接收中断

USART_ITConfig(USART_PC, USART_IT_IDLE, ENABLE); //开启串口接收中断

USART_Cmd(USART_PC, ENABLE);

}

5.2配置中断

void NVIC_Configuration(void)

{

NVIC_InitTypeDef NVIC_InitStructure;

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);

NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

}

5.3中断函数

void USART1_IRQHandler(void)

{

uint8_t clear = clear;

if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)

{

USART_ClearITPendingBit(USART1, USART_IT_RXNE);

RxBuffer[RxCounter++] = USART_ReceiveData(USART1);

}

else if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET)

{

clear = USART1->SR;

clear = USART1->DR; //先读SR再读DR,为了清除IDLE中断

RxNumber = RxCounter;

RxCounter = 0;//计数清零

IDLE_Flag = 1;//标记接收到一帧的数据

}

}

5.4小结

STM32单片机可以实现接收不定长度字节数据。由于STM32单片机带IDLE中断,利用这个中断,可以接收不定长字节的数据。由于STM32属于ARM单片机,所以这篇文章的方法也适合其他的ARM单片机。

IDLE就是串口收到一帧数据后,发生的中断。比如说给单片机一次发来1个字节,或者一次发来8个字节,这些一次发来的数据,就称为一帧数据,也可以叫做一包数据。一帧数据结束后,就会产生IDLE中断。这个中断十分有用,可以省去了好多判断的麻烦。

6 ASCII码转换为数字6.1实现步骤:

while(RxBuffer[i] != ','){ i++; len++;}//如果不为','长度加1

for(j=i-len; j

value = RxBuffer[j]&0x0f; //将ascii码转换为数字

pwm_red += value * Power(len-1);

len--;

}

i++;

len = 0;

while(RxBuffer[i] != ','){ i++; len++;}

for(j=i-len; j

value = RxBuffer[j]&0x0f; //将ascii码转换为数字

pwm_green += value * Power(len-1);

len--;

}

i++;

len = 0;

while(RxBuffer[i] != ''){ i++; len++;}

for(j=i-len; j

value = RxBuffer[j]&0x0f; //将ascii码转换为数字

pwm_blue += value * Power(len-1);

len--;

}

RedOutput(pwm_red);

GreenOutput(pwm_green);

BlueOutput(pwm_blue);

pwm_red = 0;

pwm_green = 0;

pwm_blue = 0;

for(i=0; i<11; i++) RxBuffer[i] = NULL;//清除数组

i = 0;

len = 0;

}

}

}

6.210的n次方函数

uint8_t Power(uint8_t pow)

{

uint8_t i;

uint8_t sum = 1;

for(i=0; i

return sum;

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭